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EXISTENCE OF SIX SOLUTIONS OF THE NONLINEAR

SUSPENSION BRIDGE EQUATION WITH

NONLINEARITY CROSSING THREE EIGENVALUES

Tacksun Jung and Q-Heung Choi∗

Abstract. Let Lu = utt + uxxxx and E be the complete normed
space spanned by the eigenfunctions of L. We reveal the existence
of six nontrivial solutions of a nonlinear suspension bridge equation
Lu + bu+ = 1 + εh(x, t) in E when the nonlinearity crosses three
eigenvalues. It is shown by the critical point theory induced from
the limit relative category of the torus with three holes and finite
dimensional reduction method.

1. Introduction and main result

In this paper we investigate the multiplicity of the nonlinear suspen-
sion bridge equation with Dirichlet boundary condition

utt + uxxxx + bu+ = 1 + εh(x, t) in [−π

2
,
π

2
]×R, (1.1)

u(±π

2
, t) = uxx(±π

2
, t) = 0, (1.2)

u is π − periodic in t and even in x and t, (1.3)

where u+ = max{0, u}. The suspension bridge equation is considered
as a model of the nonlinear oscillations in differential equation. We
consider a one-dimensional beam of length π suspended by cables. When
the cables are stretched, there is a restoring force which is assumed to
be proportional to the amount of the stretching. But when the beam
moves in the opposite direction, then there is no restoring force exerted

Received January 8, 2008.
2000 Mathematics Subject Classification: 35Q72.
Key words and phrases: Suspension bridge, eigenvalue, critical point theory, limit

relative category, (P.S.)∗c condition, finite dimensional reduction method.
∗Corresponding author.



2 Tacksun Jung and Q-Heung Choi

on it. If u(x, t) denotes the displacement in the downward direction at
position x and time t, then a simplified model is given by the equations
(1.1) with (1.2) and (1.3). McKenna and Walter [11] proved that if
3 < b < 15, then (1.1) with (1.2) and (1.3) has at least two solutions by
degree theory. Choi and Jung [4] also proved that if 3 < b < 15, then
(1.1) with (1.2) and (1.3) has at least three solutions by the variational
reduction method, with replacing the condition for u(t, x) in (1.3) by

u is π − periodic in t and even in x. (1.4)

Micheletti and Saccon [13] proved that there exists a number δk > 0 such
that for any b with Λ−k −δk < −b < Λ−k and Λ−k < Λ−1 (1.1) with free-ends
boundary conditions, and replacing the right hand side of (1.1) by c > 0
has at least four nontrivial solutions via the critical point theory on the
manifold with boundary induced from the limit relative category of the
Torus with one hole. In this paper we improve these results: We prove
that when the nonlinear part b crosses three eigenvalues, (1.1) with (1.2)
and (1.3) has at least six nontrivial solutions.
To state main result explicitly we need the following notations:
The eigenvalue problem

utt + uxxxx = λu (1.5)

with (1.2) and (1.3) has infinitely many eigenvalues

λmn = (2n + 1)4 − 4m2 (m,n = 0, 1, 2, . . .) (1.6)

and corresponding normalized eigenfunctions φmn (m,n ≥ 0) given by

φ0n =

√
2

π
cos(2n + 1)x for n ≥ 0, (1.7)

φmn =
2

π
cos 2mt cos(2n + 1)x for m > 0, n ≥ 0. (1.8)

It is convenient for the following to rearrange the eigenvalues λmn by
increasing magnitude: from now on we denote by (λ−i )i≥1 the sequence
of the negative eigenvalues of (1.5) with (1.2) and (1.3), by (λ+

i )i≥1 the
sequence of the positive ones, so that

. . . ≤ λ−i ≤ . . . ≤ λ−2 ≤ λ−1 < λ+
1 ≤ λ+

2 ≤ . . . ≤ λ+
i ≤ . . . . (1.9)

We note that each eigenvalue has a finite multiplicity and that λ−i →
−∞, λ+

i → +∞ as i →∞.
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Theorem 1.1. For any b with λ−4 < −b < λ−3 , there exists ε0 > 0
depending on h and b such that if |ε| < ε0, problem (1.1) with (1.2) and
(1.3) has at least six nontrivial solutions.

We are looking for weak solutions of (1.1) with (1.2) and (1.3), that is,
we are looking for critical points of a suitable functional J ∈ C1 on the
Hilbert space E. We prove our main result as follows: We first show that
the functional J satisfies Three holes Torus-Sphere variational linking
inequality and the limit relative category of Torus with three holes is 4,
so by the critical point theory induced from the limit relative category
of the torus with three holes, we show that the functional J has at least
four nontrivial mountain pass type critical points. We also find two
nontrivial critical points by the finite dimensional reduction method, so
we obtain at least six nontrivial critical points of I. In section 5, we
recall the critical point theory induced from the limit relative category.

2. Variational approach

Let Q be the square [−π
2
, π

2
]×[−π

2
, π

2
] and E0 the Hilbert space defined

by

E0 = {u ∈ L2(Q)| u is even in x} (2.1).

The set of functions {φmn} is an orthonormal base in E0. We define a
subspace E of E0 as follows

E = {u ∈ E0| u =
∑

hmnφmn,
∑

|λmn|h2
mn < ∞} (2.2)

with a norm

‖u‖ = [
∑

|λmn|h2
mn]

1
2 . (2.3)

Then this normed space E is complete. We consider an orthonormal
system of eigenfunctions {e−i , e+

i , i ≥ 1} associated with the eigenvalues
{λ−i , λ+

i , i ≥ 1} instead of the system {φmn,m, n ≥ 0} Let us set

E+ = closure of span{eigenfunctions with eigenvalue ≥ 0}, (2.4)

E− = closure of span{eigenfunctions with eigenvalue ≤ 0}. (2.5)

We define the linear projections P− : E → E−, P+ : E → E+. Then
the norm in E is given by

‖u‖2 = ‖P+u‖2 + ‖P−u‖2. (2.6)
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Let us define the functional on E corresponding to (1.1)

I(u) =

∫

Q

[
1

2
(−|ut|2 + |uxx|2) +

b

2
|u+|2 − u− εh(x, t)u]dtdx. (2.7)

By the following Proposition 2.3, I(u) ∈ C1 and the weak solutions of
(1.1) coincide with the critical points of I(u). We have some propositions
which are proved in [4].

Proposition 2.1. (i) utt + uxxxx ∈ E implies u ∈ E.
(ii) ‖u‖ ≥ ‖u‖L2 , where ‖u‖L2 denotes the L2 norm of u.
(iii) ‖u‖ = 0 iff ‖u‖L2 = 0.

Proposition 2.2. Let w(x, t) ∈ E0 and δ not an eigenvalue of (1.5)
with (1.2) and (1.3). Then all solution in E0 of

utt + uxxxx + δu+ = w(x, t) in E0 (2.8)

belong to E.

Proposition 2.3. The functional I(u) is continuous and Fréchet dif-
ferentiable at each u in E with

DI(u)v =

∫

Q

(utt + uxxxx)v + b

∫

Q

u+ · v −
∫

Q

(1 + εh(x, t))v. (2.9)

Moreover DI ∈ C. That is I ∈ C1.

By the following Lemma 2.1 and Lemma 2.2, (1.1) with (1.2) and
(1.3) has a positive (trivial) solution u0.

Lemma 2.1. For b > −1, the boundary value problem

y(4) + by+ = 1 in (−π

2
,
π

2
), y(±π

2
) = y′′(±π

2
) = 0 (2.10)

has a unique solution y, which is even and positive and satisfies

y′(−π

2
) > 0 and y′(

π

2
) < 0. (2.11)

For the proof see [11]. From Lemma 2.1 we can obtain the following
lemma.

Lemma 2.2. Let b > −1, with b not an eigenvalue of (1.5) with (1.2)
and (1.2). Let h ∈ E, with ‖h‖ = 1, be given. Then there exists ε0 > 0
(depending on b and h) such that if |ε| < ε0 (1.1) with (1.2) and (1.3)
has a positive solution u0.
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Proof. From Lemma 2.1 the problem

y(4) + by+ = 1 in (−π

2
,
π

2
), y(±π

2
) = y′′(±π

2
) = 0

has a unique positive solution y0. We note that if b is not an eigenvalue
of (1.5) with (1.2) and (1.3), then the following linear partial differential
equation

utt + uxxxx + bu = εh(x, t) in E (2.12)

has a unique solution uε. We can choose sufficiently small ε0 > 0 (de-
pending on b and h) such that if |ε| < ε0 then uε + y0 > 0, which is a
solution of (1.1) with (1.2) and (1.3).

Since (1.1) with (1.2) and (1.3) has a positive (trivial) solution, it is
convenient to look for solutions in the form u = u0 + z, so that z is a
critical point for the functional J(w) = I(u0 + w)− I(u0), where

J(z) =
1

2

∫

Q

[−|zt|2 + |zxx|2]dtdx +
b

2

∫

Q

|z|2dtdx− b

2

∫

Q

|(u0 + z)−|2dtdx.

(2.13)
Moreover

∇J(z)w =

∫

Q

(ztt − zxxxx + bz + b(u0 + z)−)wdtdx. (2.14)

Thus it is suffices to estimate the number of critical points of the
strongly indefinite functional J . To find the critical points of the func-
tional J we will describe the behaviour of J depending on the position
of −b with respect to the negative eigenvalues λ−i .

3. Existence of four critical points

In this section we will show that the functional J(z) has at least four
nontrivial critical points of mountain pass type via the critical point
theory induced from the limit relative category of the torus with three
holes. We assume that b is any number with λ−4 < −b < λ−3 . Let us set

X0 ≡ E+ ≡ closure of span{eigenfunctions with eigenvalue λ > 0},
X1 ≡ closure of span{eigenfunctions with eigenvalue λ = λ−1 },
X2 ≡ closure of span{eigenfunctions with eigenvalue λ = λ−2 },
X3 ≡ closure of span{eigenfunctions with eigenvalue λ = λ−3 },
X4 ≡ closure of span{eigenfunctions with eigenvalue λ ≤ λ−4 }.
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Then E is the topological direct sum of the subspaces X0, X1, X2, X3

and X4, where X1, X2 and X3 are one dimensional subspaces. Let wi

be fixed elements of Xi, i = 1, 2, 3, and let ρi > 0, R1 > 0 and R > R1,
i = 1, 2, 3. We also set

Si(ρi) = {z ∈ Xi| ‖z‖ = ρi}, i = 1, 2, 3.

Si(ρi)− wi = {z − wi| z ∈ Si(ρi)}, i = 1, 2, 3.

∆3
R(S1(ρ1)− w1, S2(ρ2)− w2, S3(ρ3)− w3, X4)

= {z = (z1 − w1) + (z2 − w2) + (z3 − w3) + z4| zi ∈ Xi, i = 1, 2, 3,

ρ1 ≤ ‖z1 − w1‖ ≤ R, ρ2 ≤ ‖z2 − w2‖ ≤ R, ρ3 ≤ ‖z3 − w3‖ ≤ R,

‖z4‖ ≤ R1, ‖z‖ ≤ R},

Σ3
R(S1(ρ1)− w1, S2(ρ2)− w2, S3(ρ3)− w3, X4)

= {z = (z1 − w1) + (z2 − w2) + (z3 − w3) + z4| zi ∈ Xi, i = 1, 2, 3,

‖z4‖ ≤ R1, ‖z1 − w1‖ = ρ1, ‖z2 − w2‖ = ρ2, ‖z3 − w3‖ = ρ3,

‖z‖ = R}
∩{z = z1 + z2 + z3 + z4| zi ∈ Xi, i = 1, 2, 3, 4,

‖z4‖ = R1, ρ1 ≤ ‖z1 − w1‖ ≤ R, ‖z‖ = R , w1 ∈ X1}
∩{z = z1 + z2 + z3 + z4| zi ∈ Xi, , i = 1, 2, 3, 4,

‖z4‖ = R1, ρ2 ≤ ‖z2 − w2‖ ≤ R, ‖z‖ = R , w2 ∈ X2}
∩{z = z1 + z2 + z3 + z4| zi ∈ Xi, i = 1, 2, 3, 4, ‖z4‖ = R1,

ρ3 ≤ ‖z3 − w3‖ ≤ R ‖z‖ = R w3 ∈ X3}.
We have the following Three holes Torus-Sphere variational linking in-
equality of J .

Lemma 3.1. Let b be any number with λ−4 < −b < λ−3 . Then there
exist r > 0, ρi > 0, i = 1, 2, 3, R1 > 0, R > R1 such that R > r and

sup
z∈Σ3

R(S1(ρ1)−w1,S2(ρ2)−w2,S3(ρ3)−w3,X4)

I(z) < 0 < inf
z∈Sr(X0⊕X1⊕X2⊕X3)

I(z),

(3.1)

inf
z∈Br(X0⊕X1⊕X2⊕X3)

I(z) > −∞ (3.2)

and

sup
z∈∆3

R(S1(ρ1)−w1,S2(ρ2)−w2,S3(ρ3)−w3,X4)

I(z) < ∞. (3.3)
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Proof. First we will show that there exists r > 0 such that if z ∈
Sr(X0 ⊕ X1 ⊕ X2 ⊕ X3), then I(z) > 0. Let z = z0 + z1 + z2 + z3 ∈
X0 ⊕X1 ⊕X2 ⊕X3. Then P−z0 = 0 and P+(z1 + z2 + z3) = 0. We can
choose r1 > 0 such that if ‖z‖ ≤ r1, then u0 + P−(z1 + z2 + z3) > 0. let
us choose r > 0 with r < r1. Then we have, for z ∈ X0 ⊕X1 ⊕X2 ⊕X3

with ‖z‖ ≤ r,

J(z) =
1

2

∫

Q

[−|zt|2 + |zxx|2]dtdx +
b

2

∫

Q

|z|2dtdx

− b

2

∫

Q

|(u0 + z)−|2dtdx

=
1

2
‖P+z‖2 − 1

2
‖P−z‖2 +

b

2

∫

Q

|z|2dtdx− b

2

∫

Q

|(u0 + z)−|2dtdx

=
1

2
‖P+z0‖2 − 1

2
‖P−(z1 + z2 + z3)‖2 +

b

2

∫

Q

|P+z0|2dtdx

+
b

2

∫

Q

|P−(z1 + z2 + z3)|2dtdx

− b

2

∫

Q

|(u0 + P+z0 + P−(z1 + z2 + z3))
−|2dtdx

≥ 1

2
‖P+z0‖2 +

b

2

∫

Q

|P+z0|2 +
1

2
‖P−z1‖2(−1 +

b

|λ−1 |
)

+
1

2
‖P−z2‖2(−1 +

b

|λ−2 |
) +

1

2
‖P−z3‖2(−1 +

b

|λ−3 |
)

− b

2

∫

Q

|(P+z0)
−|2 > 0

since −1 + b
|λ−1 |>0

, −1 + b
|λ−2 |>0

, −1 + b
|λ−3 |>0

. Moreover we have that

inf
z∈Br(X0⊕X1⊕X2⊕X3)

I(z) > − b

2

∫

Q

|(P+z0)
−|2 > −∞.

Now we will show that

sup
z∈Σ3

R(S1(ρ1)−w1,S2(ρ2)−w2,S3(ρ3)−w3,X4)

I(z) < 0.

Let z = (z1−w1)+ (z2−w2)+ (z3−w3)+ z4 ∈ Σ3
R(S1(ρ1)−w1, S2(ρ2)−

w2, S3(ρ3)−w3, X4), zi ∈ Si(ρi), i = 1.2.3. Since X1⊕X2⊕X3⊕X4 ⊂ E−,
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P+((z1 − w1) + (z2 − w2) + (z3 − w3) + z4) = 0. Then we have

J(z) =
1

2
‖P+z‖2 − 1

2
‖P−z‖2 +

b

2

∫

Q

|z|2 − b

2

∫

Q

|(u0 + z)−|2

= −1

2
‖P−((z1 − w1) + (z2 − w2) + (z3 − w3) + z4)‖2

+
b

2

∫

Q

|P−((z1 − w1) + (z2 − w2) + (z3 − w3) + z4)|2

− b

2

∫

Q

|(u0 − P−z)−|2

≤ 1

2
(−1 +

b

|λ−1 |
)ρ2

1 +
1

2
(−1 +

b

|λ−2 |
)ρ2

2 +
1

2
(−1 +

b

|λ−3 |
)ρ2

3 +

1

2
(−1 +

b

|λ−4 |
)‖P−z4‖2

≤ 0

since −1 + b
|λ−1 |

> 0, −1 + b
|λ−2 |

> 0, −1 + b
|λ−3 |

> 0, −1 + b
|λ−4 |

< 0,

− b
2

∫
Q
|(u0 − P−z)−|2 < 0 and ρ1, ρ2, ρ3 is a small number, there exists

R > 0 with R > r such that if z ∈ Σ3
R(S1(ρ1)−w1, S2(ρ2)−w2, S3(ρ3)−

w3, X4), then J(z) < 0. Therefore

sup
z∈Σ3

R(S1(ρ1)−w1,S2(ρ2)−w2,S3(ρ3)−w3,X4)

J(z) < 0.

Moreover if z ∈ ∆3
R(S1(ρ1) − w1, S2(ρ2) − w2, S3(ρ3) − w3, X4), then

J(z) ≤ 1
2
(−1 + b

|λ−4 |
)‖P−z4‖2 < ∞.

Let (En)n be a sequence of closed finite dimensional subspace of E
with the following assumptions: En = E−

n ⊕E+
n where E+

n ⊂ E+, E−
n ⊂

E− for all n (E+
n and E−

n are subspaces of E), dim En < +∞, En ⊂ En+1,
∪n∈NEn is dense in E.

Lemma 3.2. Let λ−4 < b < λ−3 . Then the functional J satisfies the
(P.S.)∗γ condition with respect to (En)n, for any γ ∈ R.

Proof. Let (kn)n and (zn)n be two sequences such that kn → +∞ and
zn ∈ Ekn , ∀n, J(zn) → γ and ∇J(zn) → 0. We claim that (zn)n is
bounded. By contradiction, we suppose that ‖zn‖ → ∞. If wn = zn

‖zn‖ ,
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we can suppose that wn ⇀ w0 weakly for some w0 ∈ E. We have

〈PEkn
∇J(zn)

‖zn‖ , wn〉 =
2J(zn)

‖zn‖2
+ b

∫

Q

PEkn
(

u0

‖zn‖ + wn)−wn+

b

∫

Q

PEkn
(

u0

‖zn‖ + wn)−(
u0

‖zn‖ + wn)−. (3.4)

Passing to the limit to (3.4) we get

lim
n→∞

b

∫

Q

PEkn
[(

u0

‖zn‖ + wn)−wn + (
u0

‖zn‖ + wn)−(
u0

‖zn‖ + wn)−]

= b

∫

Q

PEkn
[w−

0 w0 + w−
0 w−

0 ] = b

∫

Q

PEkn
w−

0 w+
0 = 0. (3.5)

Thus w0 = 0. Moreover we consider

〈PEkn
∇J(zn)

‖zn‖ , P+wn − P−wn〉 = ‖PEkn
P+wn‖2 + ‖PEkn

P−wn‖2

+b

∫

Q

PEkn
wn(P+wn−P−wn)+ b

∫

Q

PEkn
(

u0

‖zn‖ +wn)−(P+wn−P−wn).

(3.6)
Going to the limit we get

‖P+w0‖2 + ‖P−w0‖2 = 0. (3.7)

Hence wn converges to 0 strongly, which is a contradiction. Thus (zn)n

is bounded. We can suppose that zn ⇀ z0 weakly in E, for some z0 in
E. We claim that zn converges to z0 strongly. We have

〈PEkn
∇Jzn, P

+zn − P−zn〉 = ‖PEkn
P+zn‖2 + ‖PEkn

P−zn‖2

+b

∫

Q

PEkn
[|P+zn|2 + |P−zn|2]+ b

∫

Q

PEkn
(u0 +zn)−(P+zn−P−zn) → 0.

(3.8)
Thus we have

‖P+z0‖2 + ‖P−z0‖2 −→ −b

∫

Q

[|P+z0|2 + |P−z0|2]

−b

∫

Q

(u0 + z0)
−(P+z0 − P−z0). (3.9)
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Thus ‖PEkn
P+zn‖2+‖PEkn

P−zn‖2 = ‖PEkn
zn‖2 converges. Thus zn con-

verges strongly(passing to a subsequence), hence PEkn
zn → z0 strongly.

Therefore we have

∇J(z0) = ∇J( lim
n→∞

PEkn
zn) = lim

n→∞
PEkn

∇J(zn) = 0. (3.10)

Thus z0 is the critical point of J .

Lemma 3.3. Let b be any number with λ−4 < −b < λ−3 . If z is a
critical point for J |X0⊕X4 , then J(z) = 0 and there is no critical point
z ∈ X0 ⊕X4 such that

0 < inf
z∈Sr(X0⊕X1⊕X2⊕X3)

J(z) ≤ J(u) ≤ sup
z∈∆3

R(S1(ρ1)−w1,S2(ρ2)−w2,S3(ρ3)−w3,X4)

J(z).

(3.11)

Proof. We note that from Lemma 3.1, for fixed z0 ∈ X0, the functional
z4 7→ J(z0 + z4) is strictly concave in X4, while, for fixed z4 ∈ X4, the
functional z0 7→ I(z0 + z4) is weakly convex in X0. Moreover 0 is the
critical point in X0 ⊕ X4 with J(0) = 0. So if z = z0 + z4 is another
critical point for J |X0⊕X4 , then we have

0 = J(0) ≤ I(z0) ≤ I(z0 + z4) ≤ I(z4) ≤ J(0) = 0. (3.12)

So we have J(u) = J(0) = 0, and the last statement of the lemma
follows.

Now we will show that J has at least four nontrivial critical points of
mountain pass type in the subspace X1 ⊕X2 ⊕X3 of E.
Let PX1⊕X2⊕X3 be the orthogonal projection from E onto X1⊕X2⊕X3

and
C = {z ∈ E| ‖PX1⊕X2⊕X3z‖ ≥ 1}. (3.13)

Then C is the smooth manifold with boundary. Let Cn = C ∩ En. Let
us define a functional Ψ : E \ {X0 ⊕X4} → E by

Ψ(z) = z− PX1⊕X2⊕X3z

‖PX1⊕X2⊕X3z‖
= PX0⊕X4z+(1− 1

‖PX1⊕X2⊕X3z‖
)PX1⊕X2⊕X3z.

(3.14)
We have

∇Ψ(z)(w) = w − 1

‖PX1⊕X2⊕X3z‖
(PX1⊕X2⊕X3w

−〈 PX1⊕X2⊕X3z

‖PX1⊕X2⊕X3z‖
, w〉 PX1⊕X2⊕X3z

‖PX1⊕X2⊕X3z‖
). (3.15)
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Let us define the functional J̃ : C → R by

J̃ = J ◦Ψ. (3.16)

Then J̃ ∈ C1,1
loc . We note that if z̃ is the critical point of J̃ and lies in the

interior of C, then z = Ψ(z̃) is the critical point of J . We also note that

‖grad−C J̃(z̃)‖ ≥ ‖PX0⊕X4∇J(Ψ(z̃))‖ ∀z̃ ∈ ∂C. (3.17)

Let us set
S̃r = Ψ−1(Sr(X0 ⊕X1 ⊕X2 ⊕X3)),

B̃r = Ψ−1(Br(X0 ⊕X1 ⊕X2 ⊕X3)),

Σ̃3
R = Ψ−1(Σ3

R(S1(ρ1)− w1, S2(ρ2)− w2, S3(ρ3)− w3, X4)),

∆̃3
R = Ψ−1(∆3

R(S1(ρ1)− w1, S2(ρ2)− w2, S3(ρ3)− w3, X4)).

We note that S̃r, B̃r, Σ̃3
R and ∆̃3

R have the same topological structure as
Sr, Br, Σ3

R and ∆3
R respectively.

Lemma 3.4. Let b be any number with λ−4 < −b < λ−3 . Then J̃
satisfies the (P.S.)∗c condition with respect to (Cn)n for every real number
c̃ such that

0 < inf
z̃∈Ψ−1(Sr(X0⊕X1⊕X2⊕X3))

J̃(z̃) ≤ c̃ ≤

sup
z̃∈Ψ−1(∆3

R(S1(ρ1)−w1,S2(ρ2)−w2,S3(ρ3)−w3,X4))

J̃(z̃), (3.18)

where ρ1, ρ2, ρ3, r and R are introduced in Lemma 3.1.

Proof. Let (kn)n be a sequence such that kn → +∞, (z̃n)n be a se-
quence in C such that z̃n ∈ Ckn , ∀n, J̃(z̃n) → c̃ and grad−C J̃ |Ekn

(z̃n) → 0.
Set zn = Ψ(z̃n) (and hence zn ∈ Ekn) and J(zn) → c̃. We first consider
the case in which zn /∈ X0⊕X4, ∀n. Since for n large PEn ◦PX1⊕X2⊕X3 =
PX1⊕X2⊕X3 ◦ PEn = PX1⊕X2⊕X3 , we have

PEkn
∇J̃(z̃n) = PEkn

Ψ′(z̃n)(∇J(zn)) = Ψ′(z̃n)(PEkn
∇J(zn)) −→ 0.

(3.19)
By (3.14) and (3.15),

PEkn
∇Jzn → 0 or (3.20)

PX0⊕X4PEkn
∇J(zn) → 0 and PX1⊕X2⊕X3zn → 0. (3.21)

In the first case the claim follows from the limit Palais-Smale condition
for J . In the second case PX0⊕X4PEkn

∇J(zn) → 0. We claim that (zn)n

is bounded. By contradiction, we suppose that ‖zn‖ → +∞ and set
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wn = zn

‖zn‖ . Up to a subsequence wn ⇀ w0 weakly for some w0 ∈ X0⊕X4.

By the asymptotically linearity of ∇J(zn) we have

〈∇J(zn)

‖zn‖ , wn〉 = 〈PX0⊕X4PEkn

∇J(zn)

‖zn‖ , wn〉

+〈∇J(zn)

‖zn‖2
, PX1⊕X2⊕X3zn〉 −→ 0.

We have

〈∇J(zn)

‖zn‖ , wn〉 =
2J(zn)

‖zn‖2
+ b

∫

Q

(
u0

‖zn‖ + wn)wn + b

∫

Q

|( u0

‖zn‖ + wn)−|2,

where zn = ((zn)1, . . . , (zn)2n). Passing to the limit we get

lim
n→∞

b

∫

Q

(
u0

‖zn‖ + wn)wn + b

∫

Q

|( u0

‖zn‖ + wn)−|2 = b

∫

Q

w−
0 w+

0 = 0.

Thus w0 = 0. On the other hand we have

〈PX0⊕X4PEkn

∇J(zn)

‖zn‖ , P+wn − P−wn〉

= ‖PX0P
+wn‖2 + ‖PX4P

−wn‖2 + bPX0⊕X4PEkn

∫

Q

(|P+wn|2 + |P−wn|2)

+bPX0⊕X4PEkn

∫

Q

(
u0

‖zn‖ + wn)−(P+wn − P−wn) −→ 0.

Since wn converges to 0 weakly, ‖PX0P
+wn‖2 + ‖PX4P

−wn‖2 → 0.
Since ‖PX1⊕X2⊕X3wn‖2 → 0, wn converges to 0 strongly, which is a
contradiction. Hence (zn)n is bounded. Up to a subsequence, we can
suppose that zn converges to z0 for some z0 ∈ X0 ⊕X4. We claim that
zn converges to z0 strongly. We have

〈PX0⊕X4PEkn
∇Jzn, P

+zn − P−zn〉
= ‖PX0PEkn

P+zn‖2 + ‖PX4PEkn
P−zn‖2

+bPX0⊕X4PEkn

∫

Q

(|P+zn|2 + |P−zn|2)

+bPX0⊕X4PEkn

∫

Q

(u0 + zn)−(P+zn − P−zn).
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Thus we have

‖PX0PEkn
P+zn‖2 + ‖PX4PEkn

P−zn‖2

−→ −PX0⊕X4 [b

∫

Q

(|P+z0|2 + |P−z0|2) + b

∫

Q

(u0 + z0)
−(P+z0 − P−z0)].

That is, ‖PX0PEkn
P+zn‖2 + ‖PX4PEkn

P−zn‖2 converges.
Since ‖PX1⊕X2⊕X3zn‖2 → 0, ‖zn‖2 converges, so zn converges to z0

strongly. Therefore we have

grad−C J̃(z̃) = grad−CJ(z) = lim
n→∞

PEkn
grad−CJ(zn)

= lim
n→∞

PEkn
grad−C J̃(z̃n) = 0.

So we proved the first case. We consider the case PX1⊕X2⊕X3zn = 0, i.e.,
zn ∈ X0 ⊕X4. Then z̃n ∈ ∂C, ∀n. In this case zn = Ψ(z̃n) ∈ X0 ⊕X4

and PX0⊕X4∇J(zn) → 0. Thus by the same argument as the first case
we obtain the conclusion. So we prove the lemma.

Theorem 3.1. Let b be any number with λ−4 < −b < λ−3 . Then
there exist at least four nontrivial critical points zi, i = 1, 2, 3, 4, in
X1 ⊕X2 ⊕X3 of mountain pass type of the functional J such that

0 < inf
z∈Sr(X0⊕X1⊕X2⊕X3)

J(z) ≤ J(zi) ≤ sup
z∈∆3

R(S1(ρ1)−w1,S2(ρ2)−w2,S3(ρ3)−w3,X4)

J(z),

(3.22)
where ρ1, ρ2, ρ3, r and R are introduced in Lemma 3.1.

Proof. It suffices to show that J̃ has at least four nontrivial critical
points of mountain pass type. By Lemma 3.1, J̃ satisfies the Torus-
Sphere variational linking inequality, i. e., there exist ρ1, ρ2, ρ3, r > 0
and R > 0 such that r < R and

sup
z̃∈Σ̃3

R

J̃(z̃) = sup
z∈Σ3

R(S1(ρ1)−w1,S2(ρ2)−w2,S3(ρ3)−w3,X4)

J(z) <

0 < inf
z∈Sr(X0⊕X1⊕X2⊕X3)

J(z) = inf
z̃∈S̃r

J̃(z̃),

sup
z̃∈∆̃3

R

J̃(z̃) = sup
z∈∆3

R(S1(ρ1)−w1,S2(ρ2)−w2,S3(ρ3)−w3,X4)

J(z) < ∞

and

inf
z̃∈B̃r

J̃(z̃) = inf
z∈Br(X0⊕X1⊕X2⊕X3)

J(z) > −∞.
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By Lemma 3.4, J̃ satisfies the (P.S.)∗c̃ condition with respect to (Cn)n

for every real number c̃ such that

0 < inf
z̃∈S̃r

J̃(z̃) ≤ c̃ ≤ sup
z̃∈∆̃3

R

J̃(z̃). (3.23)

Let

Σ3
n = Σ3

R(S1(ρ1)− w1, S2(ρ2)− w2, S3(ρ3)− w3, X4) ∩ En,

∆3
n = ∆3

R(S1(ρ1)− w1, S2(ρ2)− w2, S3(ρ3)− w3, X4) ∩ En,

Σ̃3
n = Σ̃3

R ∩ En, ∆̃3
n = ∆̃3

R ∩ En.

We claim that
cat(Cn,Σ̃3

n)(∆̃
3
n) = 4. (3.24)

In fact, we consider a continuous deformation r : S̃r\X0× [0, 1] → S̃r\X0

such that
• r(x, 0) = x, ∀x ∈ S̃r\X0,

• r(x, t) = x, ∀x ∈ S̃r ∩ (X1 ⊕X2 ⊕X3), ∀t ∈ [0, 1],
• r(x, 1) ∈ S̃r ∩ (X1 ⊕X2 ⊕X3), ∀x ∈ S̃r\X0.
Now we can define, if x = x0 + x123 + x4 ∈ X0 ⊕ (X1 ⊕X2 ⊕X3)⊕X4,
t ∈ [0, 1],

r1(x, t) = x0 + ‖x123 + x4‖r( x123 + x4

‖x123 + x4‖ , t). (3.25)

Using r1, it is easy to construct, for all n, a continuous deformation
ηn : Cn × [0, 1] → Cn such that
• ηn(x, 0) = x, ∀x ∈ Cn

• ηn(x, t) = x, ∀x ∈ ∆̃3
n, ∀t ∈ [0, 1],

• ηn(x, 1) ∈ ∆̃3
n, ∀x ∈ Cn,

• ηn(x, t) ∈ Cn\S̃r, ∀x ∈ Cn\S̃r, ∀t ∈ [0, 1].
The existence of ηn implies that

cat(Cn,Σ̃3
n)(∆̃

3
n) = cat(∆̃3

n,Σ̃3
n)(∆̃

3
n). (3.26)

We note that the pair (∆̃3
n, Σ̃3

n) is homeomorphic to the pair (∆3
n, Σ3

n)
and the pair (∆3

n, Σ
3
n) is homeomorphic to the pair (Bp+1 × {(Sq1−1 −

w1) ∪ (Sq2−1 −w2) ∪ (Sq3−1 −w3)},Sp × {(Sq1−1 −w1) ∪ (Sq2−1 −w2) ∪
(Sq3−1 − w3)}), where p = dim X4 ∩ En, q1 = dim X1 ∩ En = 1, q2 =
dim X2 ∩ En = 1, q3 = dim X3 ∩ En = 1 and Br, Sr denote the r-
dimensional ball, the r-dimensional sphere, respectively. Thus the pair
(∆̃3

n, Σ̃
3
n) is homeomorphic to the pair (Bp+1 × {(Sq1−1 − w1) ∪ (Sq2−1 −

w2)∪ (Sq3−1−w3)},Sp×{(Sq1−1−w1)∪ (Sq2−1−w2)∪ (Sq3−1−w3)}).
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This fact and the facts that qi = 1, i = 1, 2, 3 and (b) of (3.7) in [7]
imply that

cat(Cn,Σ̃3
n)(∆̃

3
n) = 4.

Thus we have

cat∗
(C,Σ̃3

R)
(∆̃3

R) = 4. (3.27)

Let us set

A1 = {A ⊂ C| cat∗
(C,Σ̃3

R)
(A) ≥ 1}, A2 = {A ⊂ C| cat∗

(C,Σ̃3
R)

(A) ≥ 2},
(3.28)

A3 = {A ⊂ C| cat∗
(C,Σ̃3

R)
(A) ≥ 3}, A4 = {A ⊂ C| cat∗

(C,Σ̃3
R)

(A) ≥ 4}.
Since cat∗

(C,Σ̃3
R)

(∆̃3
R) = 4, ∆̃3

R ∈ Ai, i = 1, 2, 3. Let us set

c̃1 = inf
A∈A1

sup
z̃∈A

J̃(z̃), c̃2 = inf
A∈A2

sup
z̃∈A

J̃(z̃), (3.29)

c̃3 = inf
A∈A3

sup
z̃∈A

J̃(z̃), c̃4 = inf
A∈A4

sup
z̃∈A

J̃(z̃).

We first claim that c̃i < ∞, i = 1, 2, 3, 4. In fact, from the facts that

sup
z∈∆3

R(S1(ρ1)−w1,S2(ρ2)−w2,S3(ρ3)−w3,X4)

J(z) < ∞

in Lemma 3.1 and ∆̃3
R ∈ Ai, i = 1, 2, 3, 4, we have that

c̃i = inf
A∈Ai

sup
z̃∈A

J̃(z̃)

≤ sup
z̃∈∆̃3

R

J̃(z̃) = sup
z∈∆3

R(S1(ρ1)−w1,S2(ρ2)−w2,S3(ρ3)−w3,X4)

J(z) < ∞

for i = 1, 2, 3, 4. We also claim that sup
z̃∈Σ̃3

R
J̃(z̃) ≤ c̃i, i = 1, 2, 3, 4. In

fact, for any A ∈ Ai with Σ̃3
R ⊂ A, i = 1, 2, 3, 4,

sup
z̃∈Σ̃3

R

J̃(z̃) ≤ sup
z̃∈A

J̃(z̃), (3.30)

and hence

sup
z̃∈Σ̃3

R

J̃(z̃) ≤ inf
A∈Ai

sup
z̃∈A

J̃(z̃) = c̃i, i = 1, 2, 3, 4. (3.31)

By Lemma 3.4, J̃ satisfies the (P.S.)∗c̃ condition with respect to (Cn)n

for any real number c̃ with 0 < inf z̃∈S̃r
J̃(z̃) ≤ c̃ ≤ sup

z̃∈∆̃3
R

J̃(z̃). Thus,
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by Theorem 5.1, there exist four nontrivial critical points z̃1, z̃2, z̃3, z̃4

of mountain pass type of the functional J̃ such that

c̃1 = J̃(z̃1), c̃2 = J̃(z̃2), c̃3 = J̃(z̃3), c̃4 = J̃(z̃4). (3.32)

We claim that

inf
z̃∈S̃r

J̃(z̃) ≤ c̃1 ≤ c̃2 ≤ c̃3 ≤ c̃4 ≤ sup
z̃∈∆̃3

R

J̃(z̃). (3.33)

Since cat∗
(C,Σ̃3

R)
(∆̃3

R) = 4, ∆̃3
R ∈ A4 and hence

c̃4 = inf
A∈A4

sup
z̃∈A

J̃(z̃) ≤ sup
z̃∈∆̃3

R

J̃(z̃), ∀A ∈ A4. (3.34)

For the proof of c̃1 ≥ inf z̃∈S̃r
J̃(z̃), we construct a deformation η′n :

Cn\S̃r × [0, 1] → Cn\S̃r, for all n, such that
• η′n(x, 0) = x, ∀x ∈ Cn\S̃r,

• η′n(x, t) = x, ∀x ∈ Σ̃3
n, ∀t ∈ [0, 1],

• η′n(x, 1) ∈ Σ̃3
n, ∀x ∈ Cn.

Actually η′n can be defined by taking the retraction of ηn on Cn\S̃r

followed by a retraction of ∆̃3
n\S̃r to Σ̃3

n. The existence of η′n, for
all n, implies that any A ∈ A1 must intersect S̃r. So sup J̃(A) ≥
inf z̃∈S̃r

J̃(z̃) ∀A ∈ A1. So we have c̃1 = infA∈A1 supz̃∈A J̃(z̃) ≥ inf z̃∈S̃r
J̃(z̃).

Therefore there exist at least four nontrivial critical points z̃1, z̃2, z̃3, z̃4

for the functional J̃ such that

inf
z̃∈S̃r

J̃(z̃) ≤ J̃(z̃1) ≤ J̃(z̃2) ≤ J̃(z̃3) ≤ J̃(z̃) ≤ sup
z̃∈∆̃3

R

J̃(z̃). (3.35)

Setting zi = Ψ(z̃i), i = 1, 2, 3, 4, we have

0 < inf
z∈Sr

J(z) = inf
z̃∈S̃r

J̃(z̃) ≤ J(z1) ≤ J(z2)

≤ J(z3) ≤ J(z4) ≤ sup
z̃∈∆̃3

R

J̃(z̃) = sup
z∈∆3

R

J(z). (3.36)

We claim that z̃i /∈ ∂C, that is zi /∈ X0 ⊕ X4, which implies that zi

are the critical points for J in X1 ⊕ X2 ⊕ X3. For this we assume by
contradiction that zi ∈ X0 ⊕ X4. From (3.17), PX0⊕X4∇J(zi) = 0,
namely, zi, i = 1, 2, 3, 4, are the critical points for J |X0⊕X4 . By Lemma
3.3, J(zi) = 0, which is a contradiction for the fact that

0 < inf
z∈Sr(X0⊕X1⊕X2⊕X3)

J(z) ≤ J(zi) ≤
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sup
z∈∆3

R(S1(ρ1)−w1,S2(ρ2)−w2,S3(ρ3)−w3,X4)

J(z), i = 1, 2, 3, 4. (3.37)

By Lemma 3.3 there is no critical point z ∈ X0 ⊕X4 such that

0 < inf
z∈Sr(X0⊕X1⊕X2⊕X3)

J(z) ≤ J(z)

≤ sup
z∈∆3

R(S1(ρ1)−w1,S2(ρ2)−w2,S3(ρ3)−w3,X4)

J(z).

Hence zi /∈ X0 ⊕X4, i = 1, 2, 3, 4. This proves Theorem 3.1.

4. Proof of Theorem 1.1

In this section we will use finite dimensional reduction method to show
that J has the fifth and the sixth critical points and prove Theorem 1.1.
Let V = X1 ⊕ X2 ⊕ X3 and W be the orthogonal complement of V in
E. Let P : E → V denote the orthogonal projection of E onto V and
I−P : E → W denote that of E onto W and z = v +w, v ∈ V , w ∈ W .

Lemma 4.1. Let b be any number with λ−4 < −b < λ−3 and v ∈ V be
given. Then we have:
(i) There exists a unique solution w ∈ W of the equation

wtt + wxxxx + (I − P )[b(v + w) + b(u0 + v + w)−] = 0 in W. (4.1)

If we put w = θ(v), then θ is continuous on V and we have

∇J(v + θ(v))(w) = 0 for all w ∈ W. (4.2)

In particular, θ satisfies a uniform Lipschitz condition in v with respect
to the L2 norm (also the norm ‖ · ‖).
(ii) If F : V → R is defined by F (v) = J(v + θ(v)), then F has a
continuous Fr‘echet derivative ∇F with respect to V and

∇F (v)(h) = ∇J(v + θ(v))(h) for all h ∈ V. (4.3)

If v0 is a critical point of F , then v0 + θ(v0) is a critical point of J and
conversely every critical point of J is of this form.
(iii) If v0 + θ(v0) is a critical point of mountain pass type of J , then v0

is a critical point of mountain pass type of F .

Proof. The reader is referred to Lemma 2.2 of [4] for the proofs of
part (i) and part (ii).
(iii) Suppose that v0 is not of mountain pass type of F . Let M be an
open neighborhood of v0 in V such that either F−1(−∞, F (v0)) ∩M is



18 Tacksun Jung and Q-Heung Choi

empty or path connected. If F−1(−∞, F (v0)) ∩ M is empty, by part
(i) we see that {v + w| v ∈ M, w ∈ W} ∩ F−1(−∞, J(v0 + θ(v0)))
is also empty. Thus v0 + θ(v0) is not of mountain pass type for J .
On the other hand if F−1(−∞, F (v0)) ∩ M is path connected, letting
N = {v + w| v ∈ M, ‖w − θ(v)‖ < 1} and using (i) we have that
N∩J−1(−∞, J(v0+θ(v0))) is also path connected. This proves (iii).

Lemma 4.2. Let b be any number with λ−4 < −b < λ−3 . Then F (v) →
−∞ as ‖v‖ → ∞, so F is bounded above and satisfies the Palais-Smale
condition: Any sequence {vn} ⊂ V for which F (vn) is bounded and
∇F (vn) → 0 possesses a convergent subsequence.

Proof. For the proof refer to Lemma 2.4 and Lemma 2.7 in [4].

Lemma 4.3. Let b be any number with λ−4 < −b < λ−3 . Then there
exists a small open neighborhood B of 0 in V such that in B, v = 0 with
value F (0) = 0 is neither a minimum nor degenerate critical point of F .

Proof. Let v ∈ V be given and θ(v) the unique solution of (4.1). Then
we have

F (v) = J(v + θ(v)) =

∫

Q

[
1

2
(−|vt + θ(v)t|2 + |vxx + θ(v)xx|2)

+
b

2
|v + θ(v)|2 − b

2
|(u0 + v + θ(v))−|2]dtdx

=

∫

Q

[
1

2
(−|vt|2 + |vxx|2)

+
b

2
v2] +

∫

Q

[−vt · θ(v)t + vxx · θ(v)xx + bv · θ(v)]dtdx

+

∫

Q

[
1

2
(−|θ(v)t|2 + |θ(v)xx|2) +

b

2
θ(v)2]dtdx

=

∫

Q

[
1

2
(−|vt|2 + |vxx|2) +

b

2
v2]dtdx + C,

where

C =

∫

Q

[
1

2
(−|θ(v)t|2 + |θ(v)xx|2) +

b

2
θ(v)2]dtdx.

Since θ is a continuous function, there exists a small neighborhood B of 0
in V such that if v,∈ B,→ 0, then θ(v) → θ(0) = 0, so ‖θ(v)‖ = o(‖v‖.
Thus we have

C = o(‖v‖2).
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Thus we obtain

λ−3
2
‖v‖2

L2 +
b

2
‖v‖2

L2 + o(‖v‖2) ≤ F (v) ≤ λ−1
2
‖v‖2

L2 +
b

2
‖v‖2

L2 + o(‖v‖2)

as ‖v‖ → 0 in B. Therefore 0 with F (0) = 0 is neither a minimum nor
degenerate critical point. Thus the lemma is proved.

Lemma 4.4. (Deformation Lemma) Let X be a real Banach space
and I ∈ C1(X,R). Suppose I satisfies the Palais-Smale condition. Let
N be a given neighborhood of the set Kc of the critical points of I at
a given level c. Then there exists ε > 0, as small as we want, and a
deformation η : [0, 1] × X −→ X such that, denoting by Ab the set
{x ∈ X : I(x) ≤ b} :

(i) η(0, x) = x ∀x ∈ X,
(ii) η(t, x) = x ∀x ∈ Ac−2ε ∪ (X\Ac+2ε), ∀t ∈ [0, 1],
(iii) η(1, ·)(Ac+ε\N) ⊂ Ac−ε.

The proof of Lemma 4.4 can be found in [14].

Proof of Theorem 1.1

By Lemma 4.3, 0 with value F (0) = 0 is neither a minimum nor
degenerate critical point of F . Let B be a small open neighborhood
of 0. In section 3 we show that the functional J(z) has at least four
nontrivial critical points zi, i = 1, 2, 3, 4 of mountain pass type. Since
zi ∈ X1 ⊕ X2 ⊕ X3 = V , these points are of the form zi = vi + θ(vi),
θ(vi) = 0. By (iii) of Lemma 4.1, vi, i = 1, 2, 3, 4, are also critical points
of mountain pass type of F with 0 < F (v1) ≤ F (v2) ≤ F (v3) ≤ F (v4).
Let Ci, i = 1, 2, 3, 4, be the open neighborhoods of vi, i = 1, 2, 3, 4, in V
respectively such that B ∩ C1 ∩ C2 ∩ C3 ∩ C4 = ∅. Since F ∈ C1(V,R)
is bounded from above, satisfies the Palais-Smale condition and F (v) →
−∞ as ‖v‖ → ∞ (Lemma 4.2), maxv∈V F (v) exists and is a critical
value of F . Hence there exists a critical point v5 of F such that

F (v5) = max
v∈V

F (v). (4.4)

Let C5 be an open neighborhood of v5 in V such that B ∩ C1 ∩ C2 ∩
C3 ∩ C4 ∩ C5 = ∅. Since F (v) −→ −∞ as ‖v‖ → ∞, we can choose
v0 ∈ V \(B ∪C1 ∪C2 ∪C3 ∪C4 ∪C5) such that F (v0) < F (v1). Let Γ be
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the set of all paths in V joining v0 and v1. We write

c = inf
γ∈Γ

sup
γ

F (v). (4.5)

Let Γ′ = {γ ∈ Γ : γ ∩ C5 = ∅} and

c′ = inf
γ∈Γ′

sup
γ

F (v). (4.6)

The Mountain Pass Theorem in [14] imply that

c = inf
γ∈Γ

sup
γ

F (v)

is a critical value of F . First we will prove that if F (v5) = c, then
there exists a critical point v6 of F at level c such that v6 6= v5 (of
course v6 6= 0 since c 6= 0 (this follows from the fact that 0 with value
F (0) = 0 is neither a minimum nor degenerate critical point of F by
Lemma 4.3 and c = maxv∈V F (v) > 0)). We claim that if F (v5) = c,
then c = c′. In fact, since Γ′ ⊂ Γ, c ≤ c′. On the other hand, c′ ≤ c since
c is the maximum value of F . Hence c = c′. Suppose by contradiction
Kc = {v5}, By the above claim c = c′. Let us fix ε, η as in Lemma 4.4
with X = V , I = F , c = c, N = C5 and taking ε < 1

2
(c−F (v1)). Taking

γ ∈ Γ′ such that supγ F ≤ c. From Lemma 4.4, η(1, ·) ◦ γ ∈ Γ and

sup F (η(1, ·) ◦ γ) ≤ c− ε < c, (4.7)

which is a contradiction. Therefore there exists a critical point v6 of F
at level c such that v6 6= v5, v1, v2, v3, c4, 0, which means that F (v) has
at least six nontrivial critical points.
Second, we claim that if c = F (vi) < F (v5) for some i, i = 1, 2, 3, 4, then
there exists a critical point v6 of F at level c such that v6 6= 0, v5, vi,
i = 1, 2, 3, 4. Let Γ′′ = {γ ∈ Γ : γ ∩ Ci = ∅, for some i, i = 1, 2, 3, 4}.
Suppose by contradiction Kc = {vi} for some i, i = 1, 2, 3, 4. Let us fix
ε, η as in Lemma 4.4 with X = V , I = F , c = c, N = Ci, vi ∈ Ci, and
taking ε < 1

2
(c−F (vi)). Taking γ ∈ Γ′′ such that supγ F (v) ≤ c + ε. By

Deformation Lemma 4.4, η(1, ·) ◦ γ ∈ Gamma and

sup F (η(1, ·) ◦ γ) ≤ c− ε < c,

which is a contradiction. Therefore, there exists a critical point v6 of F
at level c such that v6 6= 0, v5, vi, i = 1, 2, 3, 4. which means that F (v)
has at least six nontrivial critical points. Finally, if c 6= F (vi) < F (v5)
for all i, then there exists a critical point v6 of F at level c such that
v6 6= 0, v5, vi for all i, i = 1, 2, 3, 4 since 0 < F (v1) < c < F (v5) and
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c 6= F (vi) for all i. Therefore F (v) has at least six nontrivial critical
points. Thus we prove Theorem 1.1.

5. Critical point theory on the manifold induced from the
limit relative category

Now, we consider the critical point theory on the manifold with
boundary induced from the limit relative category. Let E be a Hilbert
space and M be the closure of an open subset of E such that M can be en-
dowed with the structure of C2 manifold with boundary. Let f : W → R
be a C1,1 functional, where W is an open set containing M . For apply-
ing the usual topological methods of critical points theory we need a
suitable notion of critical point for f on M . We recall the following no-
tions: lower gradient of f on M , (P.S.)∗c condition and the limit relative
category (see [7]).

Definition 5.1. If u ∈ M , the lower gradient of f on M at u is
defined by

grad−Mf(u) =

{ ∇f(u) if u ∈ int(M),
∇f(u) + [< ∇f(u), ν(u) >]−ν(u) if u ∈ ∂M ,

where we denote by ν(u) the unit normal vector to ∂M at the point
u, pointing outwards. We say that u is a lower critical for f on M , if
grad−Mf(u) = 0.
Since the functional I(u) is strongly indefinite, the notion of the (P.S.)∗c
condition and limit relative category is a very useful tool for the proof
of the main theorems.
Let Mn = M ∩En, for any n, be the closure of an open subset of En and
has the structure of a C2 manifold with boundary in En. We assume
that for any n there exists a retraction rn : M → Mn. For given B ⊂ E,
we will write Bn = B ∩ En.

Definition 5.2. Let c ∈ R. We say that f satisfies the (P.S.)∗c
condition with respect to (Mn)n, on the manifold with boundary M , if
for any sequence (kn)n in N and any sequence (un)n in M such that
kn → ∞, un ∈ Mkn , ∀n, f(un) → c, grad−Mkn

f(un) → 0, there exists

a subsequence of (un)n which converges to a point u ∈ M such that
grad−Mf(u) = 0.

Let Y be a closed subspace of M .
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Definition 5.3. Let B be a closed subset of M with Y ⊂ B. We
define the relative category catM,Y (B) of B in (M,Y), as the least integer
h such that there exist h + 1 closed subsets U0, U1, . . ., Uh with the
following properties:
B ⊂ U0 ∪ U1 ∪ . . . ∪ Uh;
U1, . . . , Uh are contractible in M ;
Y ⊂ U0 and there exists a continuous map F : U0 × [0, 1] → M such
that

F (x, 0) = x ∀x ∈ U0,

F (x, t) ∈ Y ∀x ∈ Y, ∀t ∈ [0, 1],

F (x, 1) ∈ Y ∀x ∈ U0.

If such an h does not exist, we say that catM,Y (B) = +∞.

Definition 5.4. Let (X,Y ) be a topological pair and (Xn)n be a
sequence of subsets of X. For any subset B of X we define the limit
relative category of B in (X, Y ), with respect to (Xn)n, by

cat∗(X,Y )(B) = lim sup
n→∞

cat(Xn,Yn)(Bn). (5.1)

Let Y be a fixed subset of M . We set

Bi = {B ⊂ M| cat∗
(M,Y)

(B) ≥ i}, (5.2)

ci = inf
B∈Bi

sup
x∈B

f(x). (5.3)

We have the following multiplicity theorem.

Theorem 5.1. Let i ∈ N and assume that
(1) ci < +∞,
(2) supx∈Y f(x) < ci,
(3) the (P.S.)∗ci

condition with respect to (Mn)n holds.
Then there exists a lower critical point x such that f(x) = ci. If

ci = ci+1 = . . . = ci+k−1 = c, (5.4)

then

catM({x ∈ M |f(x) = c, grad−Mf(x) = 0}) ≥ k. (5.5)

Proof. Let c = ci; using the (P.S.)∗c condition, with respect to (Mn)n,
one can prove that, for any neighborhood N of

Kc = {x| f(x) = c, grad−Mf(x) = 0}, (5.6)
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there exist n0 in N and δ > 0 such that ‖grad−M‖ ≥ δ for all n ≥ n0

and all x ∈ En\N with c− δ ≤ f(x) ≤ c + δ.Moreover it is not difficult

to see that, for all n, the function f̃n : En → R ∪ {+∞} defined by

f̃n = f(x), if x ∈ Mn, f̃n(x) = +∞, otherwise, is φ-convex of order two,
according to the definitions of [6]. Then the conclusion follows using
the same arguments of [1, 7] and the nonsmooth version of the classical
Deformation Lemma.
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