• Title/Summary/Keyword: eigenvalue problem.

Search Result 550, Processing Time 0.023 seconds

Exact Static Element Stiffness Matrix of Shear Deformable Nonsymmetric Thin-walled Elastic Beams (전단변형을 고려한 비대칭 박벽보의 엄밀한 정적 요소강도행렬)

  • 김남일;곽태영;이준석;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.345-352
    • /
    • 2001
  • Derivation procedures of exact static element stiffness matrix of shear deformable thin-walled straight beams are rigorously presented for the spatial buckling analysis. An exact static element stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The buckling loads are evaluated and compared with analytic solutions or results of the analysis using ABAQUS' shell elements for the thin-walled straight beam structure in order to demonstrate the validity of this study.

  • PDF

Exact Dynamic Element Stiffness Matrix of Shear Deformable Nonsymmetric Thin-walled Beams Subjected to Initial Forces (초기하중을 받는 전단변형을 고려한 비대칭 박벽보의 엄밀한 동적 요소강도행렬)

  • 윤희택;김동욱;김상훈;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.435-442
    • /
    • 2001
  • Derivation procedures of exact dynamic element stiffness matrix of shear deformable nonsymmetric thin-walled straight beams are rigorously presented for the spatial free vibration analysis. An exact dynamic element stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The natural frequencies are evaluated and compared with analytic solutions or results of the analysis using ABAQUS' shell elements for the thin-walled straight beam structure in order to demonstrate the validity of this study.

  • PDF

Buckling Enhancement of Column Strips with Piezoelectric Layer

  • Wang, Quan;Wang, Dajun
    • Computational Structural Engineering : An International Journal
    • /
    • v.3 no.1
    • /
    • pp.49-59
    • /
    • 2003
  • This paper discusses the enhancement of the buckling capacity of column strips by use of piezoelectric layer. The analytical model for obtaining the buckling capacity of the piezoelectric coupled column with general boundary conditions modelled with different types of springs applied at the ends of the column is derived the first time. Based on this proposed model, the buckling capacity of the column strips can be accurately predicted by solving an eigenvalue problem. The computational results show the great potential of the piezoelectric materials in enhancing the buckling capacity of the column strips. The optimal locations of the piezoelectric layer for higher buckling capacity are also obtained for the columns with. standard pinned-pinned, fixed-free, and fixed-pinned structures. In addition, the buckling capacity and the increase of buckling capacity are discussed for those columns with the general boundaries as well. This research may provide a benchmark for the buckling analysis of the piezoelectric coupled strips.

  • PDF

Evaluation of Effective Length Factor by Using an Amplification Factor (확장계수를 적응한 기둥의 유효좌굴길이 계수 산정)

  • Choi, Dong-Ho;Yoo, Hoon;Shin, Jay-In;Kim, Sung-Yeon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.369-374
    • /
    • 2007
  • For a stability design of steel frames, AISC-LRFD specification recommend to use Alignment Chart and story-based methods in order to determine an effective budding length. Recently, elastic buckling analysis, which is the method that calculate the effective length of members using eigenvalue of the overall structure, has been widely used in practical design of steel frames because this method can be performed effectively and automatically by computers. However, it can in some cases lead to unexpectedly large effective length in column having small axial forces. Therefore, this paper propose a method using elastic buckling analysis, which estimate a proper effective buckling length for all members having a small axial force. For verification of proposed method, it is compared with system based approach and stiffness distribution factor method. As a result, proposed method can rationally solve a problem in some case of column having small axial force. Also, adoption range for proposed method is established.

  • PDF

Transient Response Analysis of Locally Nonlinear Structures Using Substructure-Based-State Equations (부분구조의 상태방정식을 이용한 국부 비선형계의 과도응답해석)

  • 김형근;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2457-2466
    • /
    • 1993
  • A simple method is presented for determining transient responses of locally nonlinear structures using substructure eigenproperties and Lagrange multiplier technique. Although the method is based upon the mode synthesis formulation procedure, the equations of the combined whole structure are not constructed compared with the conventional methods. Lagrange multi-pliers are used to enforce the conditions of geometric compatibility between the substructure interfaces and they are treated as external forces on each substructure itself. Substructure eigenvalue problem is defined with the substructure interface free of fixed. The transient analysis is based upon the recurrence discrete-time state equations and offers the simplicity of the Euler integration method without requiring small time increment and iterative solution procedure. Numerical examples reveal that the method is very accurated and efficient in calculating transient responses compared with the direct numerical integration method.

Exact Dynamic Stiffness Matrix of Nonsymmetric Thin-walled Curved Beams Subjected to Axial Forces (축하중을 받는 비대칭 박벽 곡선보의 엄밀한 동적강도행렬)

  • Yoon, Hee-Taek;Park, Young-Kon;Kim, Moon-Young
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.906-915
    • /
    • 2004
  • Derivation procedures of exact dynamic stiffness matrices of thin-walled curved beams subjected to axial forces are rigorously presented for the spatial free vibration analysis. An exact dynamic stiffness matrix is established from governing equations for a uniform curved beam element with nonsymmetric thin-walled cross section. Firstly this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using clement force-displacement relationships. The natural frequencies of the nonsymmetric thin-walled curved beam are evaluated and compared with analytical solutions or results by ABAQUS's shell elements in order to demonstrate the validity of this study.

  • PDF

Extraction of Even and Odd Impedance for a Coupled-line Waveguide Structure using the Vector finite Element Method (벡터유한요소법을 이용한 결합선로 구조를 갖는 도파관 구조의 우.기모드 임피던스 추출)

  • Kim, Young-Tae;Park, Jun-Seok;Ahn, Dal;Kim, Hysons-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2216-2218
    • /
    • 2000
  • This paper deals with finite element eigenvalue problem using electric field intensity to extract the even and odd impedance for a coupled-line waveguide structure. Calculations for the even-and-odd impedance of a coupled line waveguide structure are achieved based on the relative impedance concept for a waveguide with electric and magnetic wall containes.

  • PDF

Derivation of Exact Dynamic Stiffness Matrix for Non-Symmetric Thin-walled Straight Beams (비대칭 박벽보에 대한 엄밀한 동적 강도행렬의 유도)

  • 김문영;윤희택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.369-376
    • /
    • 2000
  • For the general loading condition and boundary condition, it is very difficult to obtain closed-form solutions for buckling loads and natural frequencies of thin-walled structures because its behaviour is very complex due to the coupling effect of bending and torsional behaviour. Consequently most of previous finite element formulations introduced approximate displacement fields using shape functions as Hermitian polynomials, isoparametric interpoation function, and so on. The purpose of this study is to calculate the exact displacement field of a thin-walled straight beam element with the non-symmetric cross section and present a consistent derivation of the exact dynamic stiffness matrix. An exact dynamic element stiffness matrix is established from Vlasov's coupled differential equations for a uniform beam element of non-symmetric thin-walled cross section. This numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. The natural frequencies are evaluated for the non-symmetric thin-walled straight beam structure, and the results are compared with available solutions in order to verify validity and accuracy of the proposed procedures.

  • PDF

Development of Parallel Algorithm for Dynamic Analysis of Three-Dimensional Large-Scale Structures (3차원 대형구조물의 동적해석을 위한 병렬 알고리즘 개발)

  • 김국규;성창원;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.307-314
    • /
    • 2000
  • A parallel condensation algorithm for efficient dynamic analysis of three-dimensional large-scale structures is presented. The algorithm is developed for a user-friendly and cost effective high-performance computing system on a collection of Pentium processors connected via a 100 Mb/s Ethernet LAN. To harness the parallelism in the computing system effectively, a large-scale structure is partitioned into a number of substructures equal to the number of computers in the computing system Then, for reduction in the size of an eigenvalue problem the computations required for static condensation of each substructure is processed concurrently on each slave computer. The performance of th proposed parallel algorithm is demonstrated by applying to dynamic analysis of a three dimensional structure. The results show that how the parallel algorithm facilitates the efficient use of a small number of low-cost personal computers for dynamic analysis of large-scale structures.

  • PDF

Free vibration of functionally graded thin elliptic plates with various edge supports

  • Pradhan, K.K.;Chakraverty, S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.337-354
    • /
    • 2015
  • In this article, free vibration of functionally graded (FG) elliptic plates subjected to various classical boundary conditions has been investigated. Literature review reveals no study has been performed based on functionally graded elliptic plates till date. The mechanical kinematic relations are considered based on classical plate theory. Rayleigh-Ritz technique is used to obtain the generalized eigenvalue problem. The material properties of the FG plate are assumed to vary along thickness direction of the constituents according to power-law form. Trial functions denoting the displacement components are expressed in simple algebraic polynomial forms which can handle any edge support. The objective is to study the effect of geometric configurations and gradation of constituent volume fractions on the natural frequencies. New results for frequency parameters are incorporated after performing a test of convergence. A comparison study is carried out with existing literature for validation in special cases. Three-dimensional mode shapes for circular and elliptic FG plates are also presented with various boundary conditions at the edges.