• Title/Summary/Keyword: dual gate

Search Result 189, Processing Time 0.023 seconds

Design of Multi-time Programmable Memory for PMICs

  • Kim, Yoon-Kyu;Kim, Min-Sung;Park, Heon;Ha, Man-Yeong;Lee, Jung-Hwan;Ha, Pan-Bong;Kim, Young-Hee
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1188-1198
    • /
    • 2015
  • In this paper, a multi-time programmable (MTP) cell based on a $0.18{\mu}m$ bipolar-CMOS-DMOS backbone process that can be written into by using dual pumping voltages - VPP (boosted voltage) and VNN (negative voltage) - is used to design MTP memories without high voltage devices. The used MTP cell consists of a control gate (CG) capacitor, a TG_SENSE transistor, and a select transistor. To reduce the MTP cell size, the tunnel gate (TG) oxide and sense transistor are merged into a single TG_SENSE transistor; only two p-wells are used - one for the TG_SENSE and sense transistors and the other for the CG capacitor; moreover, only one deep n-well is used for the 256-bit MTP cell array. In addition, a three-stage voltage level translator, a VNN charge pump, and a VNN precharge circuit are newly proposed to secure the reliability of 5 V devices. Also, a dual memory structure, which is separated into a designer memory area of $1row{\times}64columns$ and a user memory area of $3rows{\times}64columns$, is newly proposed in this paper.

A design of dual AC-3 and MPEG-2 audio decoder (AC-3와 MPEG-2 오디오 공용 복호화기의 설계)

  • Ko, Woo-Suk;Yoo, Sun-Kook;Park, Sung-Wook;Jung, Nam-Hoon;Kim, Joon-Seok;Lee, Keun-Sup;Youn, Dae-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.6
    • /
    • pp.1433-1442
    • /
    • 1998
  • The thesis presents a dual audio decoder which can decode both AC-3 and MPEG-2 bitstream. The MPEG-2 synthesis processi s optimized via FFT to establish the common data path with AC-'3s. A dual audio decoder consists of a DSP core which performs the control-intensive part of each algorithm and a common synthesis filter which perfomrs the computation-intensive part. All the components of the dual audio decoder have been described in VHDL and simulated with a SYNOPSYS tool. The software modeling of the DSP core was used for functional validation. After being synthesized using 0.6 .mu.m-3ML technology standard cell, the dual audio decoder was simulated at gate-level with a COMPASS tool for hardware validation.

  • PDF

Some Device Design Considerations to Enhance the Performance of DG-MOSFETs

  • Mohapatra, S.K.;Pradhan, K.P.;Sahu, P.K.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.6
    • /
    • pp.291-294
    • /
    • 2013
  • When subjected to a change in dimensions, the device performance decreases. Multi-gate SOI devices, viz. the Double Gate MOSFET (DG-MOSFET), are expected to make inroads into integrated circuit applications previously dominated exclusively by planar MOSFETs. The primary focus of attention is how channel engineering (i.e. Graded Channel (GC)) and gate engineering (i.e. Dual Insulator (DI)) as gate oxide) creates an effect on the device performance, specifically, leakage current ($I_{off}$), on current ($I_{on}$), and DIBL. This study examines the performance of the devices, by virtue of a simulation analysis, in conjunction with N-channel DG-MOSFETs. The important parameters for improvement in circuit speed and power consumption are discussed. From the analysis, DG-DI MOSFET is the most suitable candidate for high speed switching application, simultaneously providing better performance as an amplifier.

A Novel Design of Low Noise On-panel TFT Gate Driver

  • Deng, Er Lang;Shiau, Miin Shyue;Huang, Nan Xiong;Liu, Don Gey
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1305-1308
    • /
    • 2008
  • In this study, we redesigned the reliable integrated on-panel display gate driver that was equipped with dual pull-down as well as controlled discharge-path structure to reduce the high voltage stress effect and realized with TSMC 0.35 um CMOS-based technology before. An improved discharge path and a low noise design are proposed for our new a-Si TFT process implementation. Our novel reliable gate driver design can make each cell of shift register to be insensitive to the coupling noise of that stage.

  • PDF

Design and Fabrication of 1700 V Emitter Switched Thyristor (1700 V급 EST소자의 설계 및 제작에 관한 연구)

  • Kang, Ey-Goo;Ahn, Byoung-Sub;Nam, Tae-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.183-189
    • /
    • 2010
  • In this paper, the trench gate emitter switched thyristor(EST) withl trench gate electrode is proposed for improving snap-back effect which leads to a lot of problems in device applications. The parasitic thyristor which is inherent in the conventional EST is completely eliminated in this structure, allowing higher maximum controllable current densities for ESTs. The dual trench gate allows homogenous current distribution in the EST and preserves the unique feature of the gate controlled current saturation of the thyristor current. The characteristics of the 1700 V forward blocking EST obtained from two-dimensional numerical simulations (MEDICI) is described and compared with that of a conventional EST. we carried out layout, design and process of EST devices.

A Study on the Properties of the Dual-mode Plasma Torch System for Melting the Non-conductive Waste (비전도성 폐기물 용융처리를 위한 혼합형 플라즈마토치 시스템 특성 연구)

  • Moon, Young-Pyo;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.73-80
    • /
    • 2016
  • The preliminary test for the dual mode plasma torch system was carried out to explore the operation properties in advance. The dual mode plasma torch system that is able to operate in transferred, non-transferred, or dual mode is very adequate for melting the mixed wastes including nonconductive materials such as concrete, asbestos, etc. since it exploits both the high efficiency of heat transfer to the melt in transferred mode and stable operation in non-transferred mode. Also, system operation including restarting is reliable and very easy. A stationary melter with a refractory structure was designed and manufactured considering the melting behavior of slags to minimize the refractory erosion. The power supply for the dual mode plasma torch system built with high power insulated gate bipolar transistor (IGBT) modules has functions for both current control and voltage control and is sufficient to suppress the harmonics during the operation of the plasma torch. The power supply provides two different voltages for transferred operation and non-transferred. It is confirmed that the operation voltage in transferred is always higher than non-transferred. The dual mode plasma torch system was successfully developed and is under operation for a melting experiment to optimize operation data.

Design of a Distributed Mixer Using Dual-Gate MESFET's (Dual-Gate MESFET를 이용한 분포형 주파수 혼합기의 설계)

  • Oh, Yang-Hyun;An, Jeong-Sig;Kim, Han-Suk;Lee, Jong-Arc
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.15-23
    • /
    • 1998
  • In this paper, distributed mixer is studied at microwave frequency. The circuit of distributed mixer composed of gate 1,2, drain transmission lines, matching circuits in input and output terminal, DGFET's. For impedance matching of input and output port at higher frequency, image impedance concept is introduced. In distributed mixer, a DGFET's impedances are absorbed by artificial transmission line, this type of mixer can get a very broadband characteristics compared to that of current systems. A RF/LO signal is applied to each gate input port, and are excited the drain transmission line through transcondutance of the DGFET's. The output signals from each drain port of DGFET's added in same phases. We designed and frabricated the distributed mixer, and a conversion gain, noise figure, bandwidth, LO/RF isolation of the mixer are shown through computer simulation and experimentation.

  • PDF

High Isolation and Linearity MMIC SPDT Switch for Dual Band Wireless LAN Applications (이중대역 무선랜 응용을 위한 높은 격리도와 선형성을 갖는 MMIC SPDT 스위치)

  • Lee, Kang-Ho;Koo, Kyung-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.143-148
    • /
    • 2006
  • This paper presents a high isolation and power-handling single-pole double-throw(SPDT) switch for dual band wireless LAN applications. The switch circuit has asymmetric topology which uses stacked-gate to have high power-handling and isolation for the Tx path. The proposed SPDT switch has been designed with optimum gate-width, bias, and number of stacked-gate FET. This SPDT switch has been implemented with $0.25{\mu}m$ GaAs pHEMT process which has Gmmax of 500mS/mm and fmax of 150GHz. The designed SPDT switch has the measured insertion loss of better than 0.9dB and isolation of better than 40dB for the Tx path and 25dB for the Rx path and the high power handling capability with PldB of about 23dBm for control voltage of -3/0V. The fabricated SPDT switch chip size is $1.8mm{\times}1.8mm$.

Design Consideration of Bulk FinFETs with Locally-Separated-Channel Structures for Sub-50 nm DRAM Cell Transistors

  • Jung, Han-A-Reum;Park, Ki-Heung;Lee, Jong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.156-163
    • /
    • 2008
  • We proposed a new $p^+/n^+$ gate locally-separated-channel (LSC) bulk FinFET which has vertically formed oxide region in the center of fin body, and device characteristics were optimized and compared with that of normal channel (NC) FinFET. Key device characteristics were investigated by changing length of $n^+$ poly-Si gate ($L_s$), the material filling the trench, and the width and length of the trench at a given gate length ($L_g$). Using 3-dimensional simulations, we confirmed that short-channel effects were properly suppressed although the fin width was the same as that of NC device. The LSC device having the trench non-overlapped with the source/drain diffusion region showed excellent $I_{off}$ suitable for sub-50 nm DRAM cell transistors. Design of the LSC devices were performed to get reasonable $L_s/L_g$ and channel fin width ($W_{cfin}$) at given $L_gs$ of 30 nm, 40 nm, and 50 nm.

Study of a large-area graphene transistor on a CaF2 substrate using a full-coverage polymer film as an additional dielectric

  • Yoojoo Yun;Jinseok Oh;Yoonhyuck Yi;Hyunkyung Lee;Byeongwan Kim;Haeyong Kang
    • Journal of the Korean Physical Society
    • /
    • v.81
    • /
    • pp.942-947
    • /
    • 2022
  • We report the electrical transport properties of a dual-gate graphene device placed on a CaF2 substrate. A hexagonal boron nitride top-gate dielectric was introduced to confirm the electrical characteristics of the CaF2/graphene transistor because it is difficult to inject sufficient carriers through the CaF2 substrate owing to its thickness of 500 ㎛, and the typical ambipolar behavior of graphene with a slight n-doping effect was clearly observed. In addition, we used a polymethyl methacrylate (PMMA) film as a top-gate dielectric for large-scale graphene devices grown via chemical vapor deposition, which was transferred onto a CaF2 substrate. We controlled the high gate leakage current caused by the breakdown of the polymer due to non-uniformity by applying the film-transfer process rather than the direct coating method on the graphene device. Furthermore, the transport properties of large-area graphene in contact with CaF2 are discussed with respect to the effect of top-contacted PMMA.