• Title/Summary/Keyword: driver amplifier

Search Result 122, Processing Time 0.029 seconds

Design of A CMOS RF Power Amplifier for IMT-2000 Handsets (IMT-2000 단말기용 CMOS RF 전력 증폭기의 설계)

  • Lee, Dong-Woo;Han, Seong-Hwa;Lee, Ju-Sang;Yu, Sang-Dae
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.589-592
    • /
    • 2002
  • A CMOS power amplifier for IMT-2000 is designed with 0.25-${\mu}m$ CMOS technology. This amplifier circuits consist of two cascode stages. Used cascode structure has good reverse isolation. These amplifier circuits consist of two stages which are driver stage and power amplification stage. The designed power amplifier is simulated with ADS using 0.25-${\mu}m$ CMOS library at 3.3 V power supply. Simulation results indicate that the amplifier has a PAE of 39 % and power gain of 24 dBm at 1.95 GHz.

  • PDF

A 4-Channel 6.25-Gb/s/ch VCSEL Driver for HDMI 2.0 Active Optical Cables

  • Hong, Chaerin;Park, Sung Min
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.561-567
    • /
    • 2017
  • This paper presents a 4-channel common-cathode VCSEL driver array operating up to 6.25 Gb/s per channel for the applications of HDMI 2.0 active optical cables. The proposed VCSEL driver consists of an input buffer, a modified Cherry-Hooper amplifier as a pre-driver, and a main driver with pre-emphasis to drive a common-cathode VCSEL diode at high-speed full switching operations. Particularly, the input buffer merges a linear equalizer not only to broaden the bandwidth, but to reduce power consumption simultaneously. Measured results of the proposed 4-channel VCSEL driver array implemented in a $0.13-{\mu}m$ CMOS process demonstrate wide and clean eye-diagrams for up to 6.25-Gb/s operation speed with the bias current 2.0 mA and the modulation currents of $3.1mA_{PP}$. Chip core occupies the area of $0.15{\times}0.1{\mu}m^2$ and dissipate 22.8 mW per channel.

Low-Power and High-Efficiency Class-D Audio Amplifier Using Composite Interpolation Filter for Digital Modulators

  • Kang, Minchul;Kim, Hyungchul;Gu, Jehyeon;Lim, Wonseob;Ham, Junghyun;Jung, Hearyun;Yang, Youngoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.109-116
    • /
    • 2014
  • This paper presents a high-efficiency digital class-D audio amplifier using a composite interpolation filter for portable audio devices. The proposed audio amplifier is composed of an interpolation filter, a delta-sigma modulator, and a class-D output stage. To reduce power consumption, the designed interpolation filter has an optimized composite structure that uses a direct-form symmetric and Lagrange FIR filters. Compared to the filters with homogeneous structures, the hardware cost and complexity are reduced by about half by the optimization. The coefficients of the digital delta-sigma modulator are also optimized for low power consumption. The class-D output stage has gate driver circuits to reduce shoot-through current. The implemented class-D audio amplifier exhibited a high efficiency of 87.8 % with an output power of 57 mW at a load impedance of $16{\Omega}$ and a power supply voltage of 1.8 V. An outstanding signal-to-noise ratio of 90 dB and a total harmonic distortion plus noise of 0.03 % are achieved for a single-tone input signal with a frequency of 1 kHz.

High-Efficiency CMOS Power Amplifier Using Uneven Bias for Wireless LAN Application

  • Ryu, Namsik;Jung, Jae-Ho;Jeong, Yongchae
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.885-891
    • /
    • 2012
  • This paper proposes a high-efficiency power amplifier (PA) with uneven bias. The proposed amplifier consists of a driver amplifier, power stages of the main amplifier with class AB bias, and an auxiliary amplifier with class C bias. Unlike other CMOS PAs, the amplifier adopts a current-mode transformer-based combiner to reduce the output stage loss and size. As a result, the amplifier can improve the efficiency and reduce the quiescent current. The fully integrated CMOS PA is implemented using the commercial Taiwan Semiconductor Manufacturing Company 0.18-${\mu}m$ RF-CMOS process with a supply voltage of 3.3 V. The measured gain, $P_{1dB}$, and efficiency at $P_{1dB}$ are 29 dB, 28.1 dBm, and 37.9%, respectively. When the PA is tested with 54 Mbps of an 802.11g WLAN orthogonal frequency division multiplexing signal, a 25-dB error vector magnitude compliant output power of 22 dBm and a 21.5% efficiency can be obtained.

Right-Angle-Bent CPW for the Application of the Driver-Amplifier-Integrated 40 Gbps TW-EML Module

  • Yun, Ho-Gyeong;Choi, Kwang-Seong;Kwon, Yong-Hwan;Choe, Joong-Seon;Moon, Jong-Tae;Lee, Myung-Hyun
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.648-651
    • /
    • 2006
  • In this letter we present a right-angle-bent coplanar waveguide (CPW) which we developed for the application of the driver amplifier-integrated (DAI) 40 Gbps traveling wave electroabsorption modulated laser module. The developed CPW realized parallel progression of the radio frequency (RF) and light using a dielectric overlay structure and wedge bonding on the bending section. The measured $S_{11}$ and $S_{21}$ of the developed CPW were kept below-10 dB up to 35 GHz and -3 dB up to 43 GHz, respectively. These measured results of the CPW were in good agreement with the simulation results and demonstrated the applicability of the CPW to the 40 Gbps communication module.

  • PDF

Design of the 10MHz and 10W Power Source for Short Distance Wireless Power Transmission (근거리 무선 전력 전송을 위한 평형 증폭기 구조의 10MHz 10W급 전력원 설계)

  • Park, Dong-Hoon;Kim, Gui-Sung;Lim, Eun-Cheon;Park, Hye-Mi;Lee, Moon-Que
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.437-441
    • /
    • 2012
  • In this paper, we have designed and manufactured 10MHz power source for the application of short distance wireless power transmission. The designed power source consists of a DDS(direct digital synthesizer) signal generator, a buffer driver and a balanced power amplifier. Short range wireless power transmission is usually carried out by near-field inductive coupling between source and load. The distance variation between source and load gives rise to the change of load impedance of power amplifier, which has effect on the operation of power amplifier. To overcome this problem due to load variation of power amplifier, we have adopted the balanced power amplifier using the quadrature hybrid implemented by lumped capacitors and a mutually coupled coil. The experiment results show the above 40dBm output power, frequency range of 9 to 11MHz, and total DC power consumption of 36W.

A 2.4-GHz CMOS Power Amplifier with a Bypass Structure Using Cascode Driver Stage to Improve Efficiency (효율 개선을 위해 캐스코드 구동 증폭단을 활용한 바이패스 구조의 2.4-GHz CMOS 전력 증폭기)

  • Jang, Joseph;Yoo, Jinho;Lee, Milim;Park, Changkun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.966-974
    • /
    • 2019
  • In this study, we propose a CMOS power amplifier (PA) using a bypass technique to enhance the efficiency in the low-power region. For the bypass structure, the common-gate (CG) transistor of the cascode structure of the driver stage is divided in two parallel branches. One of the CG transistors is designed to drive the power stage for high-power mode. The other CG transistor is designed to bypass the power stage for low-power mode. Owing to a turning-off of the power stage, the power consumption is decreased in low-power mode. The measured maximum output power is 20.35 dBm with a power added efficiency of 12.10%. At a measured output power of 11.52 dBm, the PAE is improved from 1.90% to 7.00% by bypassing the power stage. Based on the measurement results, we verified the functionality of the proposed bypass structure.

Output-Buffer design for LCD Source Driver IC (LCD 소스 드라이버의 출력 버퍼 설계)

  • Kim, Jin-Hwan;Lee, Ju-Sang;Yu, Sang-Dae
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.629-631
    • /
    • 2004
  • The proposed output buffer is presented for driving large-size LCD panels. This output buffer is designed by adding some simple circuitry to the conventional two-stage operational amplifier. The proposed circuit is simulated in a high-voltage 0.35um CMOS process with HSPICE. The simulated result is more improved settling time than that of conventional one.

  • PDF

A 13-Gbps Low-swing Low-power Near-ground Signaling Transceiver (13-Gbps 저스윙 저전력 니어-그라운드 시그널링 트랜시버)

  • Ku, Jahyun;Bae, Bongho;Kim, Jongsun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.49-58
    • /
    • 2014
  • A low-swing differential near-ground signaling (NGS) transceiver for low-power high-speed mobile I/O interface is presented. The proposed transmitter adopts an on-chip regulated programmable-swing voltage-mode driver and a pre-driver with asymmetric rising/falling time. The proposed receiver utilizes a new multiple gain-path differential amplifier with feed-forward capacitors that boost high-frequency gain. Also, the receiver incorporates a new adaptive bias generator to compensate the input common-mode variation due to the variable output swing of the transmitter and to minimize the current mismatch of the receiver's input stage amplifier. The use of the new simple and effective impedance matching techniques applied in the transmitter and receiver results in good signal integrity and high power efficiency. The proposed transceiver designed in a 65-nm CMOS technology achieves a data rate of 13 Gbps/channel and 0.3 pJ/bit (= 0.3 mW/Gbps) high power efficiency over a 10 cm FR4 printed circuit board.

W-CDMA 30 Watts High Power Amplifier Using Anti-Phase Intermodulation Distortion Linearization Technology (Anti-Phase IMD 선형화 기술을 이용한 W-CDMA 30 W 대전력 증폭기)

  • Kang, Won-Tae;Do, Ji-Hoon;Chang, Jeong-Seok;Hong, Ui-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.723-730
    • /
    • 2007
  • This paper shows how the ACLR of power amplifier can be reduced by using Anti-phase IMD linearization technique which generate anti-phase IMD in the driver stage compare to output stage's IMD. And design process proposed. From the experimental result of W-CDMA 4FA input signal, this amplifier has ACLR -55 dBc@5 MHz offset at 30 watts average power. Compare to optimum matching technique to get maximum power gain, this technique has been improved ACLR by 12 dBc. Also this amplifier meets 50 watts average output power amplifier specification in domestic market.