• Title/Summary/Keyword: drain

Search Result 2,238, Processing Time 0.024 seconds

The Calculation Method of the Breakdown Voltage for the Drain Region with the Cylindrical Structure in LDMOS (Cylindrical 구조를 갖는 LDMOS의 Drain 역방향 항복전압의 계산 방법)

  • Lee, Un Gu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1872-1876
    • /
    • 2012
  • A calculation method of the breakdown voltage for the drain region with the cylindrical structure in LDMOS is proposed. The depletion region of the drain is divided into many smaller regions and the doping concentration of each split region is assumed to be uniformly distributed. The field and potential in each split region is calculated by the integration of the Poisson equation and the ionization integral method is used to compute the breakdown voltage. The breakdown voltage resulted from the proposed method shows the maximum relative error of 2.2% compared with the result of the 2-dimensional device simulation using BANDIS.

Degradation of Gate Induced Drain Leakage(GIDL) Current of p-MOSFET along to Analysis Condition (분석 조건에 따른 p-MOSFET의 게이트에 유기된 드레인 누설전류의 열화)

  • 배지철;이용재
    • Electrical & Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.26-32
    • /
    • 1997
  • The gate induced drain leakage(GIDL) current under the stress of worse case in -MOSFET's with ultrathin gate oxides has been measured and characterized. The GIDL current was shown that P-MOSFET's of the thicker gate oxide is smaller than that of the thinner gate oxide. It was the results that the this cur-rent is decreased with the increamental stress time at the same devices.It is analyzed that the formation components of GIDL current are both energy band to band tunneling at high gate-drain voltage and energy band to defect tunneling at low drain-gate voltage. The degradations of GIDL current was analyzed the mechanism of major role in the hot carriers trapping in gate oxide by on-state stress.

  • PDF

A Study on the Characteristics of Construction Noise by Sand Drain Method (Sand Drain 공법에 의한 작업시 발생하는 건설소음의 특성에 관한 연구)

  • Yun, Hae-Dong;Kim, Jae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.500-505
    • /
    • 2000
  • Recently, with the increasing of construction works, large construction equipment are used to reduce the term of work and labor cost in construction field. Therefore, construction equipment noise has caused much annoyance for a number of dweller in nearby construction field and it has become a very serious problem in our living environment. Neverthless, in our country, adequite guidelines for the construction equipment noise are very deficiency because of the lack of basic data and insufficient research works. From this point of view, this study attempts to survey the characteristics of attenuation and propagation of Sand Drain Method in construction field. On the basis of measurement value, we analysed about prediction possibility of Sand Drain Method. This study also present a basic data found a effective plans for Sand Drain Method.

  • PDF

A Study on the Bearing Capacity of Gravel Column in Soft Ground (연약지반에서의 쇄석골재 말뚝의 지지력 특성 연구)

  • 천병식;여유현
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.407-414
    • /
    • 1999
  • Sand drain as a vertical drainage is widely used in soft ground improvement. Recently, sand, the principal source of sand drain, is running out. A laboratory model test was carried out to utilize gravel as a substitute for sand. Though which the characteristics of gravel are compared to those of sand for engineering purpose. According to the test, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel rile explains the result. The clogging effect was not found in gravel column. As a result, it is assumed that gravel is relatively acceptable as a drainage material. Gravel material seems better than sand material in bearing capacity and it is found that bearing capacity is larger when gravel is used as compaction pile than as drain from in-situ test on bearing capacity. Increase of bearing capacity with gravel pile means an effect of composite ground by stiffness of gravel material. It can lie supposed to use gravel pile instead of sand pile in view of consolidation effect and bearing capacity.

  • PDF

Dual Mode Power Amplifier for WiBro and Wireless LAN Using Drain Bias Switching (드레인 바이어스 스위칭을 이용한 와이브로/무선랜 이중 모우드 전력증폭기)

  • Lee, Young-Min;Koo, Kyung-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.3 s.357
    • /
    • pp.1-6
    • /
    • 2007
  • A drain bias switching technique is presented to enhance power added efficiency for WiBro and wireless LAN dual band and dual mode transmitter. Some simulations have been done to predict the effect of drain and gate bias change, and bias switching is proposed to get the higher efficiency for dual mode transmitter which generates different output power for different applications. With drain bias switching and simulated optimum fixed gate bias, the amplifier shows dramatic PAE improvement compared to the amplifier without bias switching. The drain and gate bias switching technique will be useful for multi mode communication system with various functions.

Evaluation on Drainage Capacity of Cylindrical Drain with Different Core Shapes (코아형식에 따른 원통형 배수재의 구멍막힘에 의한 배수능력 평가비교)

  • Lee Kwang-Yeol;Nugroho David Setiawan;Yun Sung-Tae;Ji Ho-Yeol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.311-315
    • /
    • 2006
  • Various core shapes of cylindrical drains are used for accelerating primary consolidation for soft clay deposits, but serious harmful disadvantages on drainage capacity may occur on cylindrical drains due to confining Pressure when they are installed in that soil. In this study, two different core shapes of cylindrical drain are used to evaluate the drainage capacity with consideration of clogging effects on their filter jackets for an applied confining pressure. Column tests with radial drainage system were conducted under confining pressure of 50 kPa for 13 days. Two parameters which are discharge and accumulated volume of water drained were measured as the time elapsing. From this experimental study, the results showed that at the Initial stage before the clogging developed enough, the cylindrical drain with angular-type-plastic-core could produce discharge twice higher (maximum) than those with round-type. After 13 days had passed on, cylindrical drain with angular-type-plastic-core could produce discharge only 20% higher than those with round-type one. Eventually, there is a possibility that the efficiency of using angular-type-cylindrical-drain will be similar to the round-type one as the clogging develops more.

  • PDF

An Analysis on the Leakage Current of Drain-offset Poly-Si TFT′s (드레인오프셋트 다결정실리콘 박막트랜지스터의 누설전력 해석)

  • 이인찬;김정규;마대영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.111-116
    • /
    • 2001
  • Poly-Si TFT's(Polysilicon thin filmtransistors) have been actively studied due to their applications in active matrix liquid crystal displays and active pull-up devices of CMOS SRAM's. For such applications, the leakage current has to be in the range of sub-picoampere. However, poly-Si TFT's suffer from anomalous high leakage currents, which is attributed to the emission of the traps present at gain boundaries in the drain junction. The leakage current has been analyzed by the field emission via grain-boundary traps and thermionic field emission over potential barrier located at the grain boundary. We found that the models proposed before are not consistent with the experimental results at far as drain-offset poly-Si TFT's we fabricated concern. In this paper, leakage current of drain-offset poly-Si TFT's with different offset lengths was studied. A conduction model based on the thermionic emission of the tunneling electrons is developed to identify the leakage mechanism. It was found that the effective grain size of the drain-offset region is important factor in the leakage current. A good agreement between experimental and simulated results of the leakage current is obtained.

  • PDF

Gate-to-Drain Capacitance Dependent Model for Noise Performance Evaluation of InAlAs/InGaAs Double-gate HEMT

  • Bhattacharya, Monika;Jogi, Jyotika;Gupta, R.S.;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.331-341
    • /
    • 2013
  • In the present work, the effect of the gate-to-drain capacitance ($C_{gd}$) on the noise performance of a symmetric tied-gate $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As$ double-gate HEMT is studied using an accurate charge control based approach. An analytical expression for the gate-to-drain capacitance is obtained. In terms of the intrinsic noise sources and the admittance parameters ($Y_{11}$ and $Y_{21}$ which are obtained incorporating the effect of $C_{gd}$), the various noise performance parameters including the Minimum noise figure and the Minimum Noise Temperature are evaluated. The inclusion of gate-to-drain capacitance is observed to cause significant reduction in the Minimum Noise figure and Minimum Noise Temperature especially at low values of drain voltage, thereby, predicting better noise performance for the device.

A New Two-Dimensional Model for the Drain-Induced Barrier Lowering of Fully Depleted Short-Channel SOI-MESFET's

  • Jit, S.;Pandey, Prashant;Pal, B.B.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.4
    • /
    • pp.217-222
    • /
    • 2003
  • A new two-dimensional analytical model for the potential distribution and drain-induced barrier lowering (DIBL) effect of fully depleted short-channel Silicon-on-insulator (SOI)-MESFET's has been presented in this paper. The two dimensional potential distribution functions in the active layer of the device is approximated as a simple parabolic function and the two-dimensional Poisson's equation has been solved with suitable boundary conditions to obtain the bottom potential at the Si/oxide layer interface. It is observed that for the SOI-MESFET's, as the gate-length is decreased below a certain limit, the bottom potential is increased and thus the channel barrier between the drain and source is reduced. The similar effect may also be observed by increasing the drain-source voltage if the device is operated in the near threshold or sub-threshold region. This is an electrostatic effect known as the drain-induced barrier lowering (DIBL) in the short-gate SOI-MESFET's. The model has been verified by comparing the results with that of the simulated one obtained by solving the 2-D Poisson's equation numerically by using the pde toolbox of the widely used software MATLAB.

Development of Prototype Fill/Drain Valve for Supply of Satellite Propellant (인공위성 추진제 공급용 Fill/Drain 밸브 시제품 개발)

  • Kim, Su-Kyum;Yu, Myoung-Jong;Lee, Kyun-Ho;Choi, Joon-Min;Jang, Ki-Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.26-31
    • /
    • 2006
  • Through the KOMPSAT program, Koreanization of thruster have been carried out successfully, but there are still many difficulties in Koreanization of most core parts of propulsion system. Because the development of core parts is essential to participate in the advanced nations, KARI has carried out development of Fill/Drain valve for propellant/pressurant supply of satellite, which has high possibilities to be koreanized, with Hanwha Corp.. This paper summarizes overall processes of development including design, manufacturing and test, and finally 4 sets of modules were successfully made. Also the satisfaction of performance requirements are verified through performance tests.