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Abstract—In the present work, the effect of the gate-

to-drain capacitance (Cgd) on the noise performance 

of a symmetric tied-gate In0.52Al0.48As/In0.53Ga0.47As 

double-gate HEMT is studied using an accurate 

charge control based approach. An analytical 

expression for the gate-to-drain capacitance is 

obtained. In terms of the intrinsic noise sources and 

the admittance parameters (Y11 and Y21 which are 

obtained incorporating the effect of Cgd), the various 

noise performance parameters including the 

Minimum noise figure and the Minimum Noise 

Temperature are evaluated. The inclusion of gate-to-

drain capacitance is observed to cause significant 

reduction in the Minimum Noise figure and Minimum 

Noise Temperature especially at low values of drain 

voltage, thereby, predicting better noise performance 

for the device.    

 

Index Terms—Double-gate, HEMT, gate-to-drain 

capacitance, InAlAs/InGaAs, noise, minimum noise 

figure    

I. INTRODUCTION 

InAlAs/InGaAs double-gate HEMTs have proved to be 

the most promising candidates for the future ultra-high 

frequency and low-noise applications with the maximum 

frequency of oscillation (fmax) as high as 286 GHz and 

the extrinsic Minimum Noise Figure (NFmin) as low as 

2.1 dB at the operating frequency of 94 GHz reported for 

the 100 nm gate-length device [1-7]. However, for 

improving the accuracy of microwave and millimeter-

wave circuit design, a comprehensive and accurate active 

device model is imperative. The authors in their recent 

work proposed a charge control model based on Pucel’s 

noise theory [8-10] for the noise performance evaluation 

of a symmetric tied-gate InAlAs/InGaAs double-gate 

HEMT [11]. Superior noise performance was observed 

for the DG-HEMT as compared to the SG-HEMT in 

terms of lower noise resistance and lower Minimum 

Noise Figure. The analytical results thereby obtained for 

the operating frequency of 94 GHz and at a high drain 

voltage of 0.5V were observed to show good agreement 

with the ATLAS device simulation results [12] and the 

earlier reported Monte Carlo simulation and experimental 

results [1]. In that approach the effect of the gate-to-drain 

capacitance (Cgd) on the noise performance of the device 

was not taken into account. However, at lower value of 

drain voltages, i.e., under low field conditions, the gate-

drain capacitance exhibits a very high value. Therefore, it 

can have a very significant effect on the noise performance 

of the device which must be incorporated in the 

analytical model for accurate evaluation of Minimum 

Noise Figure and other noise performance parameters. 
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In several other analytical noise models also which 

have been previously developed for the accurate noise 

performance evaluation, the effect of the gate-to-drain 

capacitance has been neglected [13, 14]. A noise model 

proposed by Cappy [15], although includes the effect of 

Cgd, is not suited for device design due to its numerical 

approach.  

In the present work, the effect of gate-to-drain 

capacitance (Cgd) has been incorporated in the analytical 

model and its effect on the noise performance of the 

device is investigated. Analytical expression for the gate-

to-drain capacitance is obtained. Drain noise coefficient 

(P), gate-noise coefficient (R) and the correlation 

coefficient (C) are then evaluated in terms of the intrinsic 

noise sources and the gate-to-drain capacitance dependent 

admittance parameters (Y11 and Y21). The inclusion of 

gate-to-drain capacitance in the analytical model is 

observed to result in improved noise performance of the 

device in terms of reduced Minimum Noise Figure and 

Minimum Noise Temperature. However, at the same time, 

it leads to lower cut-off frequency (fT).Therefore, while, 

higher gate-to-drain capacitance leads to improved noise 

performance, a lower value of Cgd is required for a higher 

cut-off frequency.  

II. CHARGE CONTROL MODEL 

Fig. 1 shows the schematic of In0.52Al0.48As 

/In0.53Ga0.47As DG-HEMT. Following the earlier 

proposed accurate charge control model based on Pucel’s 

noise theory, the channel beneath the gate is divided into 

two regions: (I) linear region in which the electron 

velocity is directly proportional to the electric field and 

(II) saturation region in which the electrons travel with 

their saturation velocity. 

Incorporating the variation of fermi potential (Ef) with 

sheet carrier concentration (ns) as 1 2 3f s s
E k k n k n= + +  

where, k1, k2 and k3 are the temperature dependent 

constants whose values are computed as -0.143 V, 2.609 

x10-7 V. cm and -5.469x10-14 V.cm2 respectively at 300oK 

[16], the sheet carrier concentration in a 2DEG is 

evaluated as: 
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Vth is the threshold voltage of the device [11], q= electron 

charge=1.6x10-19 C, d=total InAlAs layer thickness=dd + 

di, dd=ds + da, ε = permittivity of InGaAs = 12.03εo ; 

εo=permittivity of free space=8.85 x10-12 F/m , Vgs is the 

applied gate-source voltage, V(x) is the potential at any 

point x along the channel.  

Using (1) and piecewise linear velocity field relation, 

the expression for drain current is obtained as [11]: 
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( )p w x L= = , x = L1 is the point in the 

channel where the electron velocity saturates, vsat is the 

saturation velocity (=2.63 x 105 m/s), µo is the electron 

mobility (=0.83 m2/V.s), Lg is the gate-length (=100 nm) 

and Z is the channel width (=100 µm).  

The equality of the linear region drain current and 

saturation region drain current at x=L1, gives the 

expression for linear region length as: 
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Fig. 1. Schematic of InAlAs/InGaAs DG-HEMT. 



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.4, AUGUST, 2013 333 

 

and correspondingly saturation region length, L2 = Lg-L1 

This point x=L1 along the channel (at which the 

critical electrical field is reached) shifts towards the 

source side (x=0) with increase in Vds which in-turn leads 

to increase in the saturation region length (L2). Therefore, 

L2 increases with increase in drain-source voltage and 

eventually approaches saturation at high values of Vds. A 

greater saturation region length leads to higher drain 

current and transconductance which in turn results in 

better RF and noise performance in terms of higher cut-

off frequency and lower Minimum Noise Figure. 

In the previous work [7], the transfer characteristics 

(IdS vs Vgs) of 100 nm gate-length InAlAs/InGaAs single-

gate (SG) and symmetric tied-geometry double-gate 

(DG) HEMT obtained using the analytical model were 

compared and found to agree well with the experimental 

measurements reported by Vasallo et.al. [2], thereby, 

proving the validity of the proposed model.  

The various small-signal parameters including 

transconductance (gm), drain resistance (rd) and gate-

source capacitance (Cgs) used in the noise performance 

characterization of the device are obtained following 

directly the detailed analysis already given in [11, 17] 

and are expressed as: 
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III. INFLUENCE OF GATE-TO-DRAIN 

CAPACITANCE 

The conventional equivalent circuit used for noise 

performance evaluation [8, 11] is shown with solid lines 

in Fig. 2, whereas in our present model, an additional 

gate-to-drain capacitance (Cgd), is added, which is 

denoted by dotted line. 

Gate-to-drain Capacitance which is defined as the rate 

of change of total charge in the 2DEGs with respect to 

drain-to-source voltage (Vds) when the gate-source 

voltage (Vgs) is constant is expressed as: 

 

 

Fig. 2. Equivalent Circuit of symmetric tied-gate InAlAs 

/InGaAs double-gate HEMT used for Noise Modeling. 
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where Q1 is the total charge in the linear region I 

obtained using (1) as: 
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and Q2 is the total charge in the saturation region II 

obtained using (1) as: 
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Therefore, substituting (8) and (9) in (7), we obtain the 

total gate-to-drain capacitance as: 
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The short circuit admittance parameters Y11 (input 

admittance) and Y21 (forward transfer admittance) are 

expressed in terms of transconductance (gm), gate-source 

capacitance (Cgs) and gate-drain capacitance (Cgd) as: 
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where 
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1
1

i gs
D R Cω= +  and where, 2 fω π= is the 

angular frequency (f = 94GHz). 

IV. INTRINSIC NOISE SOURCES 

1. Drain Noise Current 

 

Following the detailed analysis already presented in 

[11] the open circuit drain voltage fluctuation due to 

Johnson Noise in linear region (I) is expressed as: 
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and the open circuit drain voltage fluctuation due to 

diffusion noise in the saturation region (II) is expressed 

as: 
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where L2 = Lg-L1 = saturation region length, ∆f = 

bandwidth, To = 300 K , δ = noise temperature constant 

(=1), D = diffusion coefficient ( = 35 cm2/s ) and b is the 

effective channel thickness expressed as: 
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Then, the mean square drain noise current is expressed 

as:  
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2. Gate Noise Current 

 

Short circuit gate current fluctuation due to Johnson 

noise in linear region (I) is expressed as [10]: 
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and the Short circuit gate current fluctuation due to 

diffusion noise in Region II is expressed as: 
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V. NOISE PERFORMANCE PARAMETERS 

The intrinsic admittance parameter dependent drain 

noise coefficient (P), gate-noise coefficient (R) and 

correlation coefficient (C) can be written as follows: 
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(Notations 1 and 2 correspond to the linear and 

saturation regions respectively). 

1 1g d
i i∗  is the correlation between the Johnson noise 

induced drain noise current and gate noise current which 

is expressed as [11]: 
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The drain noise conductance (gdn) and the gate noise 

conductance (ggn) are expressed in terms of noise 

coefficients and admittance parameters as [17-19]: 
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The noise conductance (gn), noise resistance (rn) and 

the correlation impedance (Zc) are given by: 
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where, Rs is the parasitic source resistance (=1.8 Ω) and 

Rg is the gate metallization resistance (=1.7 Ω) [2]. 

The Minimum Noise Figure (NFmin) and the Minimum 

Noise Temperature (Tmin) are defined as: 
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VI. RESULTS & DISCUSSION 

Fig. 3 shows the variation of Gate-to-drain capacitance 

with drain voltage (Vds) for different gate voltages. It is 

observed that the gate-to-drain capacitance decreases 

very rapidly with increase in the drain voltage and 

eventually saturates at higher value of Vds. The saturation 

of gate-to-drain capacitance is attributed to saturation in 

the drain current at higher Vds. Therefore, due to very 

high value of Cgd at low values of drain voltage, its 

inclusion in the equivalent circuit for noise modeling is 

expected to cause a significant impact on the various 

noise performance parameters of the device especially at 

low values of drain voltage. Lower value of gate-to-drain 

capacitance is observed for lower value of Vgs due to 

decrease in the carrier concentration.   

Fig. 4(a) shows the variation of the Drain Noise 

Coefficient (P) with gate voltage for different drain 

voltages (Vds). At higher values of drain voltage, a lower 

value of P is observed. This is due to increased 

transconductance (gm) and higher value of drain 

resistance at a higher drain voltage. The inclusion of the 

gate-to-drain capacitance (Cgd) results in higher 

magnitude of forward transfer admittance (Y21) which in 

turn leads to lower values of P especially at lower values 

of drain voltages. Fig. 4(b) shows the value of P with and 

without the inclusion of Cgd at Vgs=-0.1 V and for Vds 

=0.1 V, 0.2 V and 0.5 V .It is observed that the reduction 

in the value of P with inclusion of gate-drain capacitance 

is greater for lower value of drain voltages at which Cgd 

exhibits a higher value. 

From Fig. 5(a) it is observed that the gate-noise 

coefficient (R) is lower for lower drain voltage. This 

occurs due to lower value of transconductance (gm) at 

lower drain voltage which results in lower magnitude of 

forward transfer admittance (Y21). In addition to this, it is 

observed that the inclusion of the gate-to-drain 

capacitance (Cgd) leads to further reduction in the values 

of the R. This is attributed to the higher magnitude of 

input admittance (Y11) which is seen to dominate due to 

the fact that the R is inversely proportional to the square 

of the magnitude of Y11.  

Fig. 5(b) shows the value of Gate Noise Coefficient 

(R) with and without the inclusion of Cgd at Vgs=-

0.1Vand Vds= 0.1 V, 0.3 V and 0.5 V. The reduction in the 

value of gate noise coefficient (R) with the inclusion of 
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gate-to-drain capacitance is observed to be more 

prominent for lower values of drain voltage. 

Fig. 6 shows the variation of Correlation Coefficient 

(C) with gate voltage for different values of drain voltage. 

Although, the drain noise coefficient (P) and the gate 

noise coefficient (R) decrease with the inclusion of gate-

to-drain capacitance, it is observed to cause no 

significant effect on the correlation coefficient (C). 

Lower value of C is observed for higher value of drain 

voltage which is attributed to the reduced correlation 

between the thermal noise induced drain noise current 

and gate noise current in the linear region. 

Fig. 7 illustrates the variation of intrinsic and extrinsic 

Minimum Noise Figure and Minimum Noise 

Temperature with drain current. The analytically 

obtained variation of intrinsic Minimum Noise Figure 

with drain current is observed to show good agreement 

with that obtained using the Monte-Carlo simulation data 

[1]. The increase in NFmin and Tmin at low values of drain 

current occurs due to decrease in transconductance (gm) 

which results in the increase in the drain noise coefficient 

(P) and also due to the reduction in the gate-source 

capacitance (Cgs) which leads to higher value of gate 

noise coefficient (R). At higher drain current, the increase 

in the NFmin and Tmin is attributed to increase in the 

diffusion noise. 

Fig. 8 shows the variation of cut-off frequency (fT) 
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with gate-length at different values of drain voltages. The 

cut-off frequency is observed to increase with decrease in 

gate-length. This is attributed to the decrease in the gate-

to-source capacitance (Cgs) with reduction in gate-length. 

The inclusion of Cgd in the evaluation of fT results in 

lower value of cut-off frequency. This reduction in the 

cut-off frequency with the inclusion of Cgd is more 

prominent at low drain voltages at which the magnitude 

of Cgd is very high. Therefore, a lower value of Cgd is 

desirable for a higher cut-off frequency. 

Fig. 9 illustrates the variation of Minimum Noise 

Figure (NFmin) and Minimum Noise Temperature (Tmin) 

with gate voltage for different values of drain voltage. 

The inclusion of Cgd causes reduction in NFmin and Tmin. 

This reduction is observed to be more significant for 

lower values of drain voltage at which the gate-to-drain 

capacitance is higher. This improvement in the noise 

performance with inclusion of Cgd is attributed to lower 

values of P and R which lead to lower value of noise 

resistance and hence lower Minimum Noise Figure and 

Minimum Noise Temperature. Higher value of NFmin and 

Tmin at lower drain voltage is attributed to lower value of 

gm which leads to higher value of P. 

V. CONCLUSIONS 

In the present work, the effect of the gate-drain 

capacitance (Cgd) has been incorporated in the earlier 

proposed charge control based noise model for a more 

accurate evaluation of the Minimum Noise Figure and 

Minimum Noise Temperature, especially at a lower 

values of drain voltage at which the value of Cgd is very 

high to cause a significant impact on the noise 

coefficients and hence on the overall noise performance 

of the device. While, the incorporation of feedback 

capacitance (Cgd) in the equivalent circuit model at low 

drain voltage predicts better noise performance in terms 

of lower minimum noise figure, at the same time, it also 

predicts lower cut-off frequency.  

Therefore, at low values of Vds, the impact of the gate-

drain capacitance (Cgd) (which represents the level of 

feedback) should not be neglected for accurate evaluation 

of RF and noise performance of the device (in terms of 

various figures of merit such as NFmin and fT) that 

corresponds well with the experimental measurements. 
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