• Title/Summary/Keyword: distributed loading

Search Result 341, Processing Time 0.025 seconds

Finite Element Stress Analysis of Implant Prosthesis According to Friction Fit or Slip Fit of Internal Connection System between Implant and Abutment (임플랜트와 지대주 간 내측연결 시스템에서 Friction Fit와 Slip Fit에 따른 유한요소 응력분석)

  • Jang, Doo-Ik;Jeong, Seung-Mi;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.2
    • /
    • pp.113-132
    • /
    • 2005
  • The purpose of this study was to assess the stress-induced pattern at the supporting bone, the implant fixture, the abutment and the abutment screw according to a friction-fit joint (Astra; Model 1) or slip- fit joint (Frialit-2; Model 2) in the internal connection system under vertical and inclined loading using finite element analysis. In conclusion, in the internal connection system of the implant and the abutment connection methods, the stress-induced pattern at the supporting bone, the implant fixture, the abutment and the abutment screw according to the abutment connection form had difference among them, and the stress distribution pattern usually had a widely distributed tendency along the inner surface of the implant fixture contacting the abutment post. The magnitude of the stress distributed in the supporting bone, the implant fixture, the abutment and the abutment screw was higher in the friction-fit joint than in the slip-fit joint. But it is considered that the further study is necessary about how this difference in the magnitude of the stress have an effect on the practical clinic.

A Parallel HDFS and MapReduce Functions for Emotion Analysis (감성분석을 위한 병렬적 HDFS와 맵리듀스 함수)

  • Back, BongHyun;Ryoo, Yun-Kyoo
    • Journal of the Korea society of information convergence
    • /
    • v.7 no.2
    • /
    • pp.49-57
    • /
    • 2014
  • Recently, opinion mining is introduced to extract useful information from SNS data and to evaluate the true intention of users. Opinion mining are required several efficient techniques to collect and analyze a large amount of SNS data and extract meaningful data from them. Therefore in this paper, we propose a parallel HDFS(Hadoop Distributed File System) and emotion functions based on Mapreduce to extract some emotional information of users from various unstructured big data on social networks. The experiment results have verified that the proposed system and functions perform faster than O(n) for data gathering time and loading time, and maintain stable load balancing for memory and CPU resources.

  • PDF

Ni Nanoparticles-hollow Carbon Spheres Hybrids for Their Enhanced Room Temperature Hydrogen Storage Performance

  • Kim, Jin-Ho;Han, Kyu-Sung
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.6
    • /
    • pp.550-557
    • /
    • 2013
  • A glucose hydrothermal method is described for preparing hollow carbon spheres (HCS), which have a regular morphology and a high Brunauer-Emmett-Teller surface area of 28.6 m2/g. Scanning electron microscopy shows that they have thin shells and diameter between 2 and 8 ${\mu}m$. The HCSs were modified for the enhanced room temperature hydrogen storage by employing Ni nanoparticles on their surface. The Ni-decorated HCSs were characterized by X-ray diffraction, transmission electron microscopy coupled with an energy dispersive spectroscope, and an inductively coupled plasma spectrometer, indicating that fine and well-distributed Ni nanoparticles can be accomplished on the HCSs. The hydrogen uptake capacity in HCSs with and without Ni loading was evaluated using a high-pressure microbalance at room temperature under a hydrogen pressure upto 9 MPa. As much as 1.23wt.% of hydrogen can be stored when uniformly distributed Ni nanoparticles are formed on the HCSs, while the hydrogen uptake capacity of as-received HCSs was 0.41 wt.%. For Ni nanoparticle-loaded HCSs, hydrogen molecules could be easily dissociated into atomic hydrogen and then chemically adsorbed by the sorbents, leading to an enhanced capacity for storing hydrogen.

A Design of Color-identifying Multi Vehicle Controller for Material Delivery Using Adaptive Fuzzy Controller (적응 퍼지제어기를 이용한 컬러식별 Multi Vehicle의 물류이송을 위한 다중제어기 설계)

  • Kim, Hun-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.42-49
    • /
    • 2001
  • In This paper, we present a collaborative method for material delivery using a distributed vehicle agents system. Generally used AGV(Autonomous Guided Vehicle) systems in FA(Factory Automation) require extraordinary facilities like guidepaths and landmarks and have numerous limitations for application in different environments. Moreover in the case of controlling multi vehicles, the necessity for developing corporation abilities like loading and unloading materials between vehicles including different types is increasing nowadays for automation of material flow. Thus to compensate and improve the functions of AGV, it is important to endow vehicles with the intelligence to recognize environments and goods and to determine the goal point to approach. In this study we propose an interaction method between hetero-type vehicles and adaptive fuzzy logic controllers for sensor-based path planning methods and material identifying methods which recognizes color. For the purpose of carrying materials to the goal, simple color sensor is used instead of intricate vision system to search for material and recognize its color in order to determine the goal point to transfer it to. The technique for the proposed method will be demonstrated by experiment.

  • PDF

Optimal DG Placement in a Smart Distribution Grid Considering Economic Aspects

  • Buaklee, Wirote;Hongesombut, Komsan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1240-1247
    • /
    • 2014
  • The applications of Distributed Generation (DG) in a smart distribution grid environment are widely employed especially for power balancing and supporting demand responses. Using these applications can have both positive and negative impacts on the distribution system. The sizing and location of their installations are the issues that should be taken into consideration to gain the maximum benefit from them when considering the economic aspects. This paper presents an application of the Bat Algorithm (BA) for the optimal sizing and siting of DG in a smart distribution power system in order to maximize the Benefit to Cost Ratio (BCR), subjected to system constraints including real and reactive power generation, line and transformer loading, voltage profile, energy losses, fault level as well as DG operating limits. To demonstrate the effectiveness of the proposed methodology and the impact of considering economic issues on DG placement, a simplify 9-bus radial distribution system of the Provincial Electricity Authority of Thailand (PEA) is selected for the computer simulation to explore the benefit of the optimal DG placement and the performance of the proposed approach.

Nonlinear vibration analysis of carbon nanotube reinforced composite plane structures

  • Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Rajabzadeh-Safaei, Niloofar
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.493-516
    • /
    • 2019
  • This paper is dedicated to nonlinear static and free vibration analysis of Uniform Distributed Carbon Nanotube Reinforced Composite (UD-CNTRC) structures under in-plane loading. The authors have suggested an efficient six-node triangular element. Mixed Interpolation of Tensorial Components (MITC) approach is employed to alleviate the membrane locking phenomena. Moreover, the behavior of the well-known LST element is considerably improved by applying an additional linear interpolation on the strain fields. Based on the rule of mixture, the properties of CNTRC are obtained. In this study, only the uniform distributed CNTs are employed through the thickness direction of element. To achieve the natural frequencies and shape modes, the eigenvalue problem is also solved. Using Total Lagrangian Principles, large amplitude free vibration is considered based on the first normalized mode shape of structure. Different well-known plane problem benchmarks and some proposed ones are studied to validate the accuracy and capability of authors' formulations. In addition, the effects of length to the height ratio of beam, CNT's characteristics, support conditions and normalized amplitude parameter on the linear and nonlinear vibration parameters are investigated.

Characterizing the strain transfer on the sensing cable-soil interface based on triaxial testing

  • Wu, Guan-Zhong;Zhang, Dan;Shan, Tai-Song;Shi, Bin;Fang, Yuan-Jiang;Ren, Kang
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.63-74
    • /
    • 2022
  • The deformation coordination between a rock/soil mass and an optical sensing cable is an important issue for accurate deformation monitoring. A stress-controlled triaxial apparatus was retrofitted by introducing an optical fiber into the soil specimen. High spatial resolution optical frequency domain reflectometry (OFDR) was used for monitoring the strain distribution along the axial direction of the specimen. The results were compared with those measured by a displacement meter. The strain measured by the optical sensing cable has a good linear relationship with the strain calculated by the displacement meter for different confining pressures, which indicates that distributed optical fiber sensing technology is feasible for soil deformation monitoring. The performance of deformation coordination between the sensing cable and the soil during unloading is higher than that during loading based on the strain transfer coefficients. Three hypothetical strain distributions of the triaxial specimen are proposed, based on which theoretical models of the strain transfer coefficients are established. It appears that the parabolic distribution of specimen strain should be more reasonable by comparison. Nevertheless, the strain transfer coefficients obtained by the theoretical models are higher than the measured coefficients. On this basis, a strain transfer model considering slippage at the interface of the sensing cable and the soil is discussed.

A Study on Ship Planning System for Container Terminal Using Multi-Distributed Method (다중분산기법을 이용한 컨테이너터미널 본선작업계획 수립에 관한 연구)

  • Choi, Hyung-Rim;Shin, Gae-Hyun;Kwon, Hae-Kyoung;Shon, Jung-Rock;Park, Sang-Hun;Joo, Yi-Don
    • Journal of Navigation and Port Research
    • /
    • v.33 no.10
    • /
    • pp.723-734
    • /
    • 2009
  • Container Vessel is becoming larger and faster thanks to the rapid growth of global trade and development of technology. Therefore, 15,000TEU vessel is expected to be ordered in near future. Every nations in north-east Asia are facing strong competition to be logistics hub to get the initiatives of logistics in response to the rapid change of logistics environment. According to the globalization of economy and major ports in this region also are trying to catch big shipping line for their survival. Considering above circumstances of the advent of ultra-large container vessel and spoke-and-hub strategy, it is inevitably necessary to make a fast and accurate vessel job in the terminal in order to be a leading port To meet this objective, current vessel planning system has to be improved innovatively. Therefore, this thesis propose multi distributed vessel planning system which enables multi loading/discharging planning with several planner simultaneously for faster and more accurate than existing planning and enhances quality of planning through information sharing among planners. Also this thesis uses simulation through Arena to verify the efficiency of this multi-distributed vessel planning system.

Experimental Study on Structural Behavior of Double Ribbed Deep-Deck Plate under Construction Loads (시공하중이 작용하는 더블리브 깊은 데크플레이트의 구조거동에 대한 실험적 연구)

  • Heo, Inwook;Han, Sun-Jin;Choi, Seung-Ho;Kim, Kang Su;Kim, Sung-Bae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.49-57
    • /
    • 2019
  • Recently, the use of deep deck plate has been increased in various structures, such as underground parking lots, logistics warehouses, because it can reduce construction periods and labor costs. In this study, a newly developed Double Deck (D-deck) plate which can leads to save story heights has been introduced, and experimental tests on a total of five D-deck plates under construction loads have been carried out to investigate their structural performance at construction stage. The loads were applied by sands and concrete to simulate the actual distributed loading conditions, and the vertical deflection of D-Deck and the horizontal deformation of web were measured and analyzed in detail. As a result, it was confirmed that all the D-decks showed very small vertical deflection of less than 5.34 mm under construction loads, which satisfies the maximum deflection limit of L / 180. In addition, the D-Deck plate was found to have a sufficient rigidity to resist construction loads in a stable manner.

Acoustic Emission during Crack Propagation Process of Rubber-Modified Epoxy Resin (고무변성 에폭시 수지의 균열진전과정과 음향방출 특성)

  • 이덕보;김현수;최낙삼;남기우;문창권
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.44-50
    • /
    • 2003
  • The damage zone around a crack tip occurring before the fracture is a significant domain. which affects the toughening mechanism of materials. In this study. the growth process of damage zone in the vicinity of crack tip for rubber-modified epoxy resin is investigated using an acoustic emission(AE) analysis. The weight fractions of rubber(CTBN 1300$\times$B) in rubber-modified epoxy resin are 5 wt% and 15 wt%. The fracture toughness($K_{IC}$) and the fracture energy($G_{IC}$) were measured using 3 point bending single-edge notched specimens. The damage zone and rubber particles distributed around the crack tip were observed by a polarized optical microscope and an atomic force microscope(AFM). The damage zone around crack tip of rubber-modified epoxy resin was formed at 13 % loading and developed until 57 % loading of the fracture load. The crack initiated at 57 % loading grew repeatedly in the stick-slip propagation behavior. Based on time-frequency analysis, it was confirmed that AE signals with frequency bands of 0.15~0.20 MHz and 0.20~0.30 MHz were generated from cavitation and stable/unstable cracking inside the damage zone.