DOI QR코드

DOI QR Code

Ni Nanoparticles-hollow Carbon Spheres Hybrids for Their Enhanced Room Temperature Hydrogen Storage Performance

  • Kim, Jin-Ho (Icheon branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Han, Kyu-Sung (Icheon branch, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2013.11.24
  • Accepted : 2013.12.31
  • Published : 2013.12.31

Abstract

A glucose hydrothermal method is described for preparing hollow carbon spheres (HCS), which have a regular morphology and a high Brunauer-Emmett-Teller surface area of 28.6 m2/g. Scanning electron microscopy shows that they have thin shells and diameter between 2 and 8 ${\mu}m$. The HCSs were modified for the enhanced room temperature hydrogen storage by employing Ni nanoparticles on their surface. The Ni-decorated HCSs were characterized by X-ray diffraction, transmission electron microscopy coupled with an energy dispersive spectroscope, and an inductively coupled plasma spectrometer, indicating that fine and well-distributed Ni nanoparticles can be accomplished on the HCSs. The hydrogen uptake capacity in HCSs with and without Ni loading was evaluated using a high-pressure microbalance at room temperature under a hydrogen pressure upto 9 MPa. As much as 1.23wt.% of hydrogen can be stored when uniformly distributed Ni nanoparticles are formed on the HCSs, while the hydrogen uptake capacity of as-received HCSs was 0.41 wt.%. For Ni nanoparticle-loaded HCSs, hydrogen molecules could be easily dissociated into atomic hydrogen and then chemically adsorbed by the sorbents, leading to an enhanced capacity for storing hydrogen.

Keywords

References

  1. K.Y.Lin, W.T.Tsai, T.J.Yang, "Effect of Ni nanoparticle distribution on hydrogen uptake in carbon nanotubes", J. Power Sources, Vol. 196, 2011, p. 3389. https://doi.org/10.1016/j.jpowsour.2010.04.026
  2. H.S.Kim, H.Lee, K.S.Han, J.H.Kim, M.S.Song, M.S.Park, J.Y.Lee, J.K.Kang, "Hydrogen storage in Ni nanoparticle-dispersed multiwalled carbon nanotubes", J. Phys. Chem. B, Vol. 109, p. 8983.
  3. H.Lee, J.H.Kim, J.Y.Lee, "Hydrogen storage in Ni nanoparticles-dispersed multiwall carbon nanotubes", Trans. of the Korea Hydrogen Energy Society, Vol. 13, No. 1, 2002, p. 74.
  4. C.W.Huang, H.C.Wu, Y.Y.Li. "Hydrogen storage in platelet graphite nanofibers", Sep. Purif. Technol., Vol. 58, 2007, p. 219. https://doi.org/10.1016/j.seppur.2007.07.032
  5. W.C.Xu, K.Takahasi, Y.Matsuo, Y.Hattori, M.Kumagai, S.Ishiyama, K.Kaneko, S.Iijima, "Investigation of hydrogen storage capacity of various carbon materials", Int. J. Hydrogen Energy, Vol. 32, 2007, p. 2504. https://doi.org/10.1016/j.ijhydene.2006.11.012
  6. C.C.Huang, H.M.Chen, C.H.Chen, "Hydrogen adsorption on modified activated carbon", Int. J. Hydrogen Energy, Vol. 35, 2010, p. 2777.
  7. W.Zhao, V.Fierro, C.Zlotea, E.Aylon, M.T. Izquierdo, M.Latroche, A.Cezard, "Optimization of activated carbons for hydrogen storage", Int. J. Hydrogen Energy, Vol. 36, 2011, p. 11746. https://doi.org/10.1016/j.ijhydene.2011.05.181
  8. H.Y.Tian, C.E.Buckley, S.B.Wang, M.F.Zhou, "Enhanced hydrogen storage capacity in carbon aerogels treated with KOH", Carbon, Vol. 47, 2009, p. 2128. https://doi.org/10.1016/j.carbon.2009.03.063
  9. H.Y.Tian, C.E.Buckley, Paskevicius, D.A. Sheppard, "Acetic acid catalysed carbon xerogels derived from resorcinol-furfural for hydrogen storage", Int. J. Hydrogen Energy, Vol. 36, 2011, p. 671.
  10. A.Ghosh, K.S.Subrahmanyam, K.S.Krishna, S.Datta, A.Govindaraj, S.K.Pati, "Uptake of H2 and $CO_2$ by graphene", J. Phys. Chem.C, Vol. 112, 2008, p. 15704. https://doi.org/10.1021/jp805802w
  11. L.P.Ma, Z.S.Wu, J.Li, E.D.Wu, W.C.Ren, H.M. Cheng, "Hydrogen adsorption behavior of graphene above critical temperature", Int. J. Hydrogen Energy, Vol. 23, 2009, p. 2329.
  12. J.Jiang, Q.Gao, Z.Zheng, K.Xia, J.Hu, "Enhanced room temperature hydrogen storage capacity of hollow nitrogen-containing carbon spheres", Int. J. Hydrogen Energy, Vol. 35, 2010, p. 210-216. https://doi.org/10.1016/j.ijhydene.2009.10.042
  13. H. Akasaka, T. Takahata, I. Toda, H. Ono, S. Ohshio, S. Himeno, T. Kokubu, and H. Saitoh, "Hydrogen storage ability of porous carbon material fabricated from coffee been wastes", Int. J. Hydrogen Energy, Vol. 36, 2011, p. 580-585. https://doi.org/10.1016/j.ijhydene.2010.09.102
  14. Z. Yang, Y. Xia, and R. Mokaya, "Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials", J. Am. Chem. Soc., Vol. 129, 2007, p. 1673-1679. https://doi.org/10.1021/ja067149g
  15. Z. Wen, Q. Wang, Q. Zhang, and J. Li, "Hollow carbon spheres with wide size distribution as anode catalyst support for direct methanol fuel cells", Electrochem. Commun., Vol. 9, 2007, p. 1867-1872. https://doi.org/10.1016/j.elecom.2007.04.016
  16. J. Wu, F. Hu, X. Hu, Z. Wei, and P. K. Shen, "Improved kinetics of methanol oxidation on Pt/hollow carbon sphere catalysts", Electrochim. Acta, Vol. 53, 2008, p. 8341-8345. https://doi.org/10.1016/j.electacta.2008.06.051
  17. A. A. Deshmukh, S. D. Mhlanga, and N. J. Coville, "Carbon spheres", Mater. Sci. Eng., R, Vol. 70, 2010, p. 1-28. https://doi.org/10.1016/j.mser.2010.06.017
  18. F. Li, Q. Q. Zou, and Y. Y. Xia, "CoO-loaded graphitable carbon hollow spheres as anode materials for lithium ion battery", J. Power Sources, Vol. 77, 2008, p. 546-552.
  19. B. Liu, D. Jia, Q. Meng, and J. Rao, "A novel method for preparation of hollow carbon spheres under a gas pressure atmosphere", Carbon, Vol. 45, 2007, p. 668-689. https://doi.org/10.1016/j.carbon.2006.12.001
  20. X. Sun, and Y. Li, "Hollow carbonaceous capsules from glucose solution", J. Colloid Interface Sci., Vol. 291, 2005, p. 7-12. https://doi.org/10.1016/j.jcis.2005.04.101
  21. Z. Yan, Z. Hu, C. Chen, H. Meng, P. K. Shen, H. Ji, and Y. Meng, "Hollow carbon hemispheres supported palladium electrocatalyst at improved performance for alcohol oxidation", J. Power Sources, Vol. 195, 2010, p. 7146. https://doi.org/10.1016/j.jpowsour.2010.06.014
  22. F.L.Wang, L.L.Pang, Y.Y.Jiang, B.Chen, D.Lin, N.Lun, H.L.Zhu, R.Liu, X.L.Meng, Y.Wang, Y.J.Bai, L.W.Yin, "Simple synthesis of hollow carbon spheres from glucose", Mater. Lett., Vol. 63, 2009, p. 2564. https://doi.org/10.1016/j.matlet.2009.09.008
  23. H.Hou, A.K.Schaper, F.Weller, A.Greiner, "Carbon nanotubes and spheres produced by modified ferrocene pyrolysis", Chem. Mater., Vol. 14, 2002, p. 3990. https://doi.org/10.1021/cm021206x
  24. L.Xu, W.Zhang, Q.Yang, Y.Ding, W.Yu, Y.Qian, "A novel route to hollow and solid carbon spheres", Carbon, Vol. 43, 2005, p. 1090. https://doi.org/10.1016/j.carbon.2004.11.032
  25. E.Yoo, T.Habe, J.Nakamura, "Possibilities of atomic hydrogen storage by carbon nanotubes or graphite materials", Sci. Technol. Adv. Mater., Vol. 6, 2005, p. 615. https://doi.org/10.1016/j.stam.2005.04.008
  26. A.L.M.Reddy, Ramaprabhu, "Hydrogen storage properties of nanocrystalline Pt dispersed multiwalled carbon nanotubes", Int. J. Hydrogen Energy, Vol. 32, 2007, p. 3998. https://doi.org/10.1016/j.ijhydene.2007.04.048
  27. M.Zielinski, R.Wojcieszak, S.Monteverdi, M. Mercy, H.H.Bettahar, "Hydrogen storage in nickel catalysts supported on activated carbon", Int. J. Hydrogen Energy, Vol. 32, 2007, p. 1024.
  28. J.Mao, Z.Guo, X.Yu, H.Liu, "Enhanced hydrogen sorption properties in the $LiBH_4-MgH_2$ system catalysed by Ru nanoparticles supported on multi walled carbon nanotubes", J. Alloys Compd., Vol. 509, 2011, p. 5012. https://doi.org/10.1016/j.jallcom.2011.02.004
  29. A.Patterson, "The Scherrer Formula for X-ray particle size determination", Phys. Rev., Vol. 56, 1939, p. 978. https://doi.org/10.1103/PhysRev.56.978
  30. L.Zubizarreta, A.Arenillas, J.J.Pis, "Carbon materials for H2 storage", Int. J. Hydrogen Energy, Vol. 34, 2009, p. 4575. https://doi.org/10.1016/j.ijhydene.2008.07.112

Cited by

  1. Hydrogen Storage in Pristine and d10-Block Metal-Anchored Activated Carbon Made from Local Wastes vol.8, pp.5, 2015, https://doi.org/10.3390/en8053578