Browse > Article
http://dx.doi.org/10.7316/KHNES.2013.24.6.550

Ni Nanoparticles-hollow Carbon Spheres Hybrids for Their Enhanced Room Temperature Hydrogen Storage Performance  

Kim, Jin-Ho (Icheon branch, Korea Institute of Ceramic Engineering and Technology)
Han, Kyu-Sung (Icheon branch, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.24, no.6, 2013 , pp. 550-557 More about this Journal
Abstract
A glucose hydrothermal method is described for preparing hollow carbon spheres (HCS), which have a regular morphology and a high Brunauer-Emmett-Teller surface area of 28.6 m2/g. Scanning electron microscopy shows that they have thin shells and diameter between 2 and 8 ${\mu}m$. The HCSs were modified for the enhanced room temperature hydrogen storage by employing Ni nanoparticles on their surface. The Ni-decorated HCSs were characterized by X-ray diffraction, transmission electron microscopy coupled with an energy dispersive spectroscope, and an inductively coupled plasma spectrometer, indicating that fine and well-distributed Ni nanoparticles can be accomplished on the HCSs. The hydrogen uptake capacity in HCSs with and without Ni loading was evaluated using a high-pressure microbalance at room temperature under a hydrogen pressure upto 9 MPa. As much as 1.23wt.% of hydrogen can be stored when uniformly distributed Ni nanoparticles are formed on the HCSs, while the hydrogen uptake capacity of as-received HCSs was 0.41 wt.%. For Ni nanoparticle-loaded HCSs, hydrogen molecules could be easily dissociated into atomic hydrogen and then chemically adsorbed by the sorbents, leading to an enhanced capacity for storing hydrogen.
Keywords
Hollow carbon spheres; Hydrogen storage; Glucose; Ni impregnation; Hydrothermal synthesis; Spillover effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A.Ghosh, K.S.Subrahmanyam, K.S.Krishna, S.Datta, A.Govindaraj, S.K.Pati, "Uptake of H2 and $CO_2$ by graphene", J. Phys. Chem.C, Vol. 112, 2008, p. 15704.   DOI   ScienceOn
2 L.P.Ma, Z.S.Wu, J.Li, E.D.Wu, W.C.Ren, H.M. Cheng, "Hydrogen adsorption behavior of graphene above critical temperature", Int. J. Hydrogen Energy, Vol. 23, 2009, p. 2329.
3 J.Jiang, Q.Gao, Z.Zheng, K.Xia, J.Hu, "Enhanced room temperature hydrogen storage capacity of hollow nitrogen-containing carbon spheres", Int. J. Hydrogen Energy, Vol. 35, 2010, p. 210-216.   DOI   ScienceOn
4 H. Akasaka, T. Takahata, I. Toda, H. Ono, S. Ohshio, S. Himeno, T. Kokubu, and H. Saitoh, "Hydrogen storage ability of porous carbon material fabricated from coffee been wastes", Int. J. Hydrogen Energy, Vol. 36, 2011, p. 580-585.   DOI   ScienceOn
5 Z. Yang, Y. Xia, and R. Mokaya, "Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials", J. Am. Chem. Soc., Vol. 129, 2007, p. 1673-1679.   DOI   ScienceOn
6 J. Wu, F. Hu, X. Hu, Z. Wei, and P. K. Shen, "Improved kinetics of methanol oxidation on Pt/hollow carbon sphere catalysts", Electrochim. Acta, Vol. 53, 2008, p. 8341-8345.   DOI   ScienceOn
7 A. A. Deshmukh, S. D. Mhlanga, and N. J. Coville, "Carbon spheres", Mater. Sci. Eng., R, Vol. 70, 2010, p. 1-28.   DOI   ScienceOn
8 F. Li, Q. Q. Zou, and Y. Y. Xia, "CoO-loaded graphitable carbon hollow spheres as anode materials for lithium ion battery", J. Power Sources, Vol. 77, 2008, p. 546-552.
9 B. Liu, D. Jia, Q. Meng, and J. Rao, "A novel method for preparation of hollow carbon spheres under a gas pressure atmosphere", Carbon, Vol. 45, 2007, p. 668-689.   DOI   ScienceOn
10 Z. Yan, Z. Hu, C. Chen, H. Meng, P. K. Shen, H. Ji, and Y. Meng, "Hollow carbon hemispheres supported palladium electrocatalyst at improved performance for alcohol oxidation", J. Power Sources, Vol. 195, 2010, p. 7146.   DOI   ScienceOn
11 F.L.Wang, L.L.Pang, Y.Y.Jiang, B.Chen, D.Lin, N.Lun, H.L.Zhu, R.Liu, X.L.Meng, Y.Wang, Y.J.Bai, L.W.Yin, "Simple synthesis of hollow carbon spheres from glucose", Mater. Lett., Vol. 63, 2009, p. 2564.   DOI   ScienceOn
12 E.Yoo, T.Habe, J.Nakamura, "Possibilities of atomic hydrogen storage by carbon nanotubes or graphite materials", Sci. Technol. Adv. Mater., Vol. 6, 2005, p. 615.   DOI   ScienceOn
13 A.L.M.Reddy, Ramaprabhu, "Hydrogen storage properties of nanocrystalline Pt dispersed multiwalled carbon nanotubes", Int. J. Hydrogen Energy, Vol. 32, 2007, p. 3998.   DOI   ScienceOn
14 M.Zielinski, R.Wojcieszak, S.Monteverdi, M. Mercy, H.H.Bettahar, "Hydrogen storage in nickel catalysts supported on activated carbon", Int. J. Hydrogen Energy, Vol. 32, 2007, p. 1024.
15 A.Patterson, "The Scherrer Formula for X-ray particle size determination", Phys. Rev., Vol. 56, 1939, p. 978.   DOI
16 L.Zubizarreta, A.Arenillas, J.J.Pis, "Carbon materials for H2 storage", Int. J. Hydrogen Energy, Vol. 34, 2009, p. 4575.   DOI   ScienceOn
17 X. Sun, and Y. Li, "Hollow carbonaceous capsules from glucose solution", J. Colloid Interface Sci., Vol. 291, 2005, p. 7-12.   DOI   ScienceOn
18 W.Zhao, V.Fierro, C.Zlotea, E.Aylon, M.T. Izquierdo, M.Latroche, A.Cezard, "Optimization of activated carbons for hydrogen storage", Int. J. Hydrogen Energy, Vol. 36, 2011, p. 11746.   DOI   ScienceOn
19 Z. Wen, Q. Wang, Q. Zhang, and J. Li, "Hollow carbon spheres with wide size distribution as anode catalyst support for direct methanol fuel cells", Electrochem. Commun., Vol. 9, 2007, p. 1867-1872.   DOI   ScienceOn
20 J.Mao, Z.Guo, X.Yu, H.Liu, "Enhanced hydrogen sorption properties in the $LiBH_4-MgH_2$ system catalysed by Ru nanoparticles supported on multi walled carbon nanotubes", J. Alloys Compd., Vol. 509, 2011, p. 5012.   DOI   ScienceOn
21 H.Hou, A.K.Schaper, F.Weller, A.Greiner, "Carbon nanotubes and spheres produced by modified ferrocene pyrolysis", Chem. Mater., Vol. 14, 2002, p. 3990.   DOI   ScienceOn
22 C.W.Huang, H.C.Wu, Y.Y.Li. "Hydrogen storage in platelet graphite nanofibers", Sep. Purif. Technol., Vol. 58, 2007, p. 219.   DOI   ScienceOn
23 K.Y.Lin, W.T.Tsai, T.J.Yang, "Effect of Ni nanoparticle distribution on hydrogen uptake in carbon nanotubes", J. Power Sources, Vol. 196, 2011, p. 3389.   DOI   ScienceOn
24 H.S.Kim, H.Lee, K.S.Han, J.H.Kim, M.S.Song, M.S.Park, J.Y.Lee, J.K.Kang, "Hydrogen storage in Ni nanoparticle-dispersed multiwalled carbon nanotubes", J. Phys. Chem. B, Vol. 109, p. 8983.
25 H.Lee, J.H.Kim, J.Y.Lee, "Hydrogen storage in Ni nanoparticles-dispersed multiwall carbon nanotubes", Trans. of the Korea Hydrogen Energy Society, Vol. 13, No. 1, 2002, p. 74.   과학기술학회마을
26 W.C.Xu, K.Takahasi, Y.Matsuo, Y.Hattori, M.Kumagai, S.Ishiyama, K.Kaneko, S.Iijima, "Investigation of hydrogen storage capacity of various carbon materials", Int. J. Hydrogen Energy, Vol. 32, 2007, p. 2504.   DOI   ScienceOn
27 C.C.Huang, H.M.Chen, C.H.Chen, "Hydrogen adsorption on modified activated carbon", Int. J. Hydrogen Energy, Vol. 35, 2010, p. 2777.
28 H.Y.Tian, C.E.Buckley, S.B.Wang, M.F.Zhou, "Enhanced hydrogen storage capacity in carbon aerogels treated with KOH", Carbon, Vol. 47, 2009, p. 2128.   DOI   ScienceOn
29 H.Y.Tian, C.E.Buckley, Paskevicius, D.A. Sheppard, "Acetic acid catalysed carbon xerogels derived from resorcinol-furfural for hydrogen storage", Int. J. Hydrogen Energy, Vol. 36, 2011, p. 671.
30 L.Xu, W.Zhang, Q.Yang, Y.Ding, W.Yu, Y.Qian, "A novel route to hollow and solid carbon spheres", Carbon, Vol. 43, 2005, p. 1090.   DOI   ScienceOn