• Title/Summary/Keyword: direct sum

Search Result 228, Processing Time 0.02 seconds

DIRECT SUM ON WFI-ALGEBRAS

  • Roh, Eun Hwan
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.571-577
    • /
    • 2009
  • The notion of subdirect sum and direct sum in WFI-algebras is introduced, and several properties are investigated.

  • PDF

ON DIRECT SUMS IN BOUNDED BCK-ALGEBRAS

  • HUANG YISHENG
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.2
    • /
    • pp.221-229
    • /
    • 2005
  • In this paper we consider the decompositions of subdirect sums and direct sums in bounded BCK-algebras. The main results are as follows. Given a bounded BCK-algebra X, if X can be decomposed as the subdirect sum $\bar{\bigoplus}_{i{\in}I}A_i$ of a nonzero ideal family $\{A_i\;{\mid}\;i{\in}I\}$ of X, then I is finite, every $A_i$ is bounded, and X is embeddable in the direct sum $\bar{\bigoplus}_{i{\in}I}A_i$ ; if X is with condition (S), then it can be decomposed as the subdirect sum $\bar{\bigoplus}_{i{\in}I}A_i$ if and only if it can be decomposed as the direct sum $\bar{\bigoplus}_{i{\in}I}A_i$ ; if X can be decomposed as the direct sum $\bar{\bigoplus}_{i{\in}I}A_i$, then it is isomorphic to the direct product $\prod_{i{\in}I}A_i$.

Direct sum decompositions of indecomposable injective modules

  • Lee, Sang-Cheol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.33-43
    • /
    • 1998
  • Matlis posed the following question in 1958: if N is a direct summand of a direct sum M of indecomposable injectives, then is N itself a direct sum of indecomposable innjectives\ulcorner It will be proved that the Matlis problem has an affirmative answer when M is a multiplication module, and that a weaker condition then that of M being a multiplication module can be given to module M when M is a countable direct sum of indecomposable injectives.

  • PDF

DECOMPOSITION OF THE KRONECKER SUMS OF MATRICES INTO A DIRECT SUM OF IRREDUCIBLE MATRICES

  • Gu, Caixing;Park, Jaehui;Peak, Chase;Rowley, Jordan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.637-657
    • /
    • 2021
  • In this paper, we decompose (under unitary similarity) the Kronecker sum A ⊞ A (= A ⊗ I + I ⊗ A) into a direct sum of irreducible matrices, when A is a 3×3 matrix. As a consequence we identify 𝒦(A⊞A) as the direct sum of several full matrix algebras as predicted by Artin-Wedderburn theorem, where 𝒦(T) is the unital algebra generated by Tand T*.

DIRECT PROJECTIVE MODULES WITH THE SUMMAND SUM PROPERTY

  • Han, Chang-Woo;Choi, Su-Jeong
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.4
    • /
    • pp.865-868
    • /
    • 1997
  • Let R be a ring with a unity and let M be a unitary left R-module. In this paper, we establish [5, Proposition 2.8] by showing the proof of it. Moreover, from the above result, we obtain some properties of direct projective modules which have the summand sum property.

  • PDF

IDEALS AND DIRECT PRODUCT OF ZERO SQUARE RINGS

  • Bhavanari, Satyanarayana;Lungisile, Goldoza;Dasari, Nagaraju
    • East Asian mathematical journal
    • /
    • v.24 no.4
    • /
    • pp.377-387
    • /
    • 2008
  • We consider associative ring R (not necessarily commutative). In this paper the concepts: zero square ring of type-1/type-2, zero square ideal of type-1/type-2, zero square dimension of a ring R were introduced and obtained several important results. Finally, some relations between the zero square dimension of the direct sum of finite number of rings; and the sum of the zero square dimension of individual rings; were obtained. Necessary examples were provided.

  • PDF

DIRECT PRODUCTED W*-PROBABILITY SPACES AND CORRESPONDING AMALGAMATED FREE STOCHASTIC INTEGRATION

  • Cho, Il-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.131-150
    • /
    • 2007
  • In this paper, we will define direct producted $W^*-porobability$ spaces over their diagonal subalgebras and observe the amalgamated free-ness on them. Also, we will consider the amalgamated free stochastic calculus on such free probabilistic structure. Let ($A_{j},\;{\varphi}_{j}$) be a tracial $W^*-porobability$ spaces, for j = 1,..., N. Then we can define the corresponding direct producted $W^*-porobability$ space (A, E) over its N-th diagonal subalgebra $D_{N}\;{\equiv}\;\mathbb{C}^{{\bigoplus}N}$, where $A={\bigoplus}^{N}_{j=1}\;A_{j}\;and\;E={\bigoplus}^{N}_{j=1}\;{\varphi}_{j}$. In Chapter 1, we show that $D_{N}-valued$ cumulants are direct sum of scalar-valued cumulants. This says that, roughly speaking, the $D_{N}-freeness$ is characterized by the direct sum of scalar-valued freeness. As application, the $D_{N}-semicircularityrity$ and the $D_{N}-valued$ infinitely divisibility are characterized by the direct sum of semicircularity and the direct sum of infinitely divisibility, respectively. In Chapter 2, we will define the $D_{N}-valued$ stochastic integral of $D_{N}-valued$ simple adapted biprocesses with respect to a fixed $D_{N}-valued$ infinitely divisible element which is a $D_{N}-free$ stochastic process. We can see that the free stochastic Ito's formula is naturally extended to the $D_{N}-valued$ case.

Simple Presentness in Modular Group Algebras over Highly-generated Rings

  • Danchev, Peter V.
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.1
    • /
    • pp.57-64
    • /
    • 2006
  • It is proved that if G is a direct sum of countable abelian $p$-groups and R is a special selected commutative unitary highly-generated ring of prime characteristic $p$, which ring is more general than the weakly perfect one, then the group of all normed units V (RG) modulo G, that is V (RG)=G, is a direct sum of countable groups as well. This strengthens a result due to W. May, published in (Proc. Amer. Math. Soc., 1979), that treats the same question but over a perfect ring.

  • PDF

INJECTIVE MODULES OVER ω-NOETHERIAN RINGS, II

  • Zhang, Jun;Wang, Fanggui;Kim, Hwankoo
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1051-1066
    • /
    • 2013
  • By utilizing known characterizations of ${\omega}$-Noetherian rings in terms of injective modules, we give more characterizations of ${\omega}$-Noetherian rings. More precisely, we show that a commutative ring R is ${\omega}$-Noetherian if and only if the direct limit of GV -torsion-free injective R-modules is injective; if and only if every R-module has a GV -torsion-free injective (pre)cover; if and only if the direct sum of injective envelopes of ${\omega}$-simple R-modules is injective; if and only if the essential extension of the direct sum of GV -torsion-free injective R-modules is the direct sum of GV -torsion-free injective R-modules; if and only if every $\mathfrak{F}_{w,f}(R)$-injective ${\omega}$-module is injective; if and only if every GV-torsion-free R-module admits an $i$-decomposition.