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DIRECT SUM ON WFI-ALGEBRAS

Eun Hwan Roh*

Abstract. The notion of subdirect sum and direct sum in WFI-
algebras is introduced, and several properties are investigated.

1. Introduction

In 1990, W. M. Wu [8] introduced the notion of fuzzy implication
algebras (FI-algebra, for short), and investigated several properties. In
[7], Z. Li and C. Zheng introduced the notion of distributive (resp. reg-
ular, commutative) FI-algebras, and investigated the relations between
such FI-algebras and MV-algebras. In [1], Y. B. Jun discussed several
aspects of WFI-algebras, and gave a characterization of a WFI-algebra.
He introduced the notion of associative (resp. normal, medial) WFI-
algebras, and investigated several properties. He gave conditions for a
WFI-algebra to be associative/medial, and provided characterizations
of associative/medial WFI-algebras, and showed that every associative
WFI-algebra is a group in which every element is an involution. He also
verified that the class of all medial WFI-algebras is a variety. Y. B. Jun
and S. Z. Song [6] introduced the notions of simulative and/or mutant
WFI-algebras and investigated some properties. They established char-
acterizations of a simulative WFI-algebra, and gave a relation between
an associative WFI-algebra and a simulative WFI-algebra. They also
found some types for a simulative WFI-algebra to be mutant. Jun, Park
and Roh [5] introduced the concept of ideals of WFI-algebras. They gave
relations between a filter and an ideal, and provided characterizations
of an ideal. Also they established an extension property for an ideal. In
[2] and [3], Y. B. Jun introduced the concept of perfect filters, concrete
filters, mote, beam and osculatory in WFI-algebra. He gave relations
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between various these notions. Y. B. Jun and C. H. Park [4] discussed
uncanny filters, and investigated related properties. In this paper, we
introduce the notion of subdirect sum and direct sum on WFI-algebra.
Also we provide related properties.

2. Preliminaries

Let K(τ) be the class of all algebras of type τ = (2, 0). By a WFI-
algebra we mean a system X = (X,ª, 1) ∈ K(τ) such that for all x, y, z ∈
X:
(a1) xª (y ª z) = y ª (xª z),
(a2) (xª y)ª (

(y ª z)ª (xª z)
)

= 1,
(a3) xª x = 1,
(a4) xª y = y ª x = 1 ⇒ x = y.

For the convenience of notation, we shall write [x, y1, y2, · · · , yn] for

(· · · ((xª y1)ª y2)ª · · · )ª yn.

We define [x, y]0 = x, and for n > 0, [x, y]n = [x, y, y, · · · , y], where y
occurs n-times.

Lemma 2.1. [1] In a WFI-algebra X, the following are true:

(b1) xª [x, y]2 = 1,
(b2) 1ª x = 1 ⇒ x = 1,
(b3) 1ª x = x,
(b4) xª y = 1 ⇒ (y ª z)ª (xª z) = 1, (z ª x)ª (z ª y) = 1,
(b5) (xª y)ª 1 = (xª 1)ª (y ª 1),
(b6) [x, y]3 = xª y.

A nonempty subset S of a WFI-algebra X is called a subalgebra of X
if xª y ∈ S whenever x, y ∈ S. A nonempty subset F of a WFI-algebra
X is called a filter of X if it satisfies:
(c1) 1 ∈ F ,
(c2) xª y ∈ F and x ∈ F imply y ∈ F for all x, y ∈ X.

A filter F of a WFI-algebra X is said to be closed [1] if F is also a
subalgebra of X.

Lemma 2.2. [1] Let F be a filter of a WFI-algebra X. Then F is
closed if and only if xª 1 ∈ F for all x ∈ F .

Lemma 2.3. [1] In a finite WFI-algebra, every filter is closed.
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We now define a relation “¹” on X by x ¹ y if and only if xª y = 1.
It is easy to verify that a WFI-algebra is a partially ordered set with
respect to ¹. For a WFI-algebra X, the set

S(X) := {x ∈ X | x ¹ 1}
is called the simulative part of X ([6]). Note that S(X) is a subalgebra
of X.

Lemma 2.4. [6] Let X be a WFI-algebra. Then S(X) is a filter of X.

The doubly simulative part of X [5] is defined to be the set

DS(X) := {x ∈ X | [x, 1]2 = x}.
Obviously, 1 ∈ DS(X) and DS(X) ∩ S(X) = {1}.

3. Main results

In what follows let X denote a WFI-algebra (X;ª, 1) unless otherwise
specified.

Lemma 3.1. For any X, if a ∈ X, then the following conditions are
equivalent:

(1) a ≤ x ⇒ a = x for any x ∈ X.
(2) [a, 1]2 = a.
(3) there is x ∈ X such that a = xª 1.

Proof. (1) ⇒ (2). By (b1), we have [a, 1]2 = a.
(2) ⇒ (1). Let a ¹ x for any x ∈ X. Then we have

xª a = xª [a, 1]2 = (aª 1)ª (xª 1) = 1.

and so a = x by (a4).
(2) ⇒ (3). We have a = [a, 1]2 = xª 1, where x := aª 1.
(3) ⇒ (2). Suppose that a = xª 1 for some x ∈ X. Then we have

[a, 1]2 ª a = [xª 1, 1]2 ª (xª 1) = (xª 1)ª (xª 1) = 1,

and so [a, 1]2 = a by (a4).

Lemma 3.2. [1] Let X be a WFI-algebra. Then the following condi-
tions are equivalent:

(1) [a, 1]2 = a for any a ∈ X.
(2) [a, x]2 = a for any a, x ∈ X.

We now consider the generated filters in WFI-algebras.
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Definition 3.3. Let S be a subset of X. We call the least filter of X
containing S, the generated filter of X by S, denoted by < S >.

It is obvious that the intersection of any filter family of X is a filter.
So the generated filter is well-defined and we have an obvious assertion
as follows.

Lemma 3.4. Let X be a WFI-algebra and S, T ⊆ X. If S ⊆ T , then
< S >⊆< T >. In particular, if S = ∅, then < S >= {1}.

We denote < {a1, a2, · · · , an} > by < a1, a2, · · · , an > in brevity.
Sometimes, the filter < a > generated by one element a is also called a
principal filter of X. The next theorem gives the description of elements
in < S >.

Theorem 3.5. Let S be a nonempty subset of X and let

G := {x ∈ X | a1 ª (a2 ª (· · · ª (an−1 ª (an ª x)) · · · )) = 1
for some a1, a2, · · · , an ∈ S}.

Then < S >= G ∪ {1}.
Proof. The proof is straightforward.

Theorem 3.6. Let F be a filter of X. Define a binary operation ≡
on X as follow:

x ≡ y(modF ) ⇔ xª y ∈ F and y ª x ∈ F

for any x, y ∈ X. Then ≡ is a congruence on X.

Proof. The proof is standard.

Theorem 3.7. Let F be a filter of X and ≡ be a congruence relation
on X defined by Theorem 3.6. We denote

≡x:= {y ∈ X|x ≡ y(modF )} and X/ ≡ := {≡x |x ∈ X}.
Then the quotient algebra X/ ≡ := (X/ ≡;¯,≡1) is a WFI-algebra,
where the operation ¯ on X/ ≡ given by ≡x ¯ ≡y := ≡x¯y.

Proof. The proof is immediate.

Definition 3.8. Let F1 and F2 be filters of X such that X= < F1 ∪
F2 > and F1 ∩ F2 = {1}, then X is called the subdirect sum of F1 and
F2, denoted by X = F1⊕̄F2.
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Example 3.9. Let X := {1, a, b} be a set with the following Cayley
table.

ª 1 a b
1 1 a b
a 1 1 b
b 1 a 1

Then X = (X;ª, 1) is a WFI-algebra. It is easy to verify that F1 = {1, a}
and F2 = {1, b} are filters of X, and X = F1⊕̄F2.

Theorem 3.10. Let F1 and F2 be closed filters of X. If X = F1⊕̄F2.
Then there are unique a ∈ F1 and b ∈ F2 such that x ≡ a(modF2) and
y ≡ b(mod F1).

Proof. Let us first prove that there is unique a ∈ F1 such that x ≡
a(modF2). Let x ∈ X. Since X =< F1 ∪ F2 >, by Theorem 3.5, we
know that there exist b1, b2, · · · , bn ∈ F2 such that b1ª (b2ª (· · ·ª (bnª
x) · · · )) = 1. Put a := b1ª (b2ª (· · · ª (bnª x) · · · )), then a ∈ F1. Thus
we have

b1 ª (b2 ª (· · · ª (bn ª (aª x)) · · · )) = aª a = 1,

and so aªx ∈ F2. Moreover, since xªa = b1ª (b2ª (· · ·ª (bnª1) · · · )),
by F2 being a closed filter of X, it follows x ª a ∈ F2. Therefore we
have x ≡ a(modF2). Let a, a′ ∈ F1 such that x ≡ a(modF2) and
x ≡ a′(modF2). By the symmetry and transitivity of congruence, we
have a ≡ a′(mod F2), and so aªa′ ∈ F2 and a′ªa ∈ F2. Also, since F1 is
a closed filter of X and a, a′ ∈ F1, we obtain aªa′ ∈ F1 and a′ªa ∈ F1.
Hence we get aªa′ ∈ F1∩F2 and a′ªa ∈ F1∩F2. Since F1∩F2 = {1},
we have aª a′ = 1 = a′ ª a′. Therefore we get a = a′.

Similarly, there is unique b ∈ F2 such that x ≡ b(modF1). This
completes the proof.

Theorem 3.11. Let F be a closed filter of X. If S(X) ∩ F = {1},
then F ⊆ S(X)∗. Further, if X = S(X)⊕̄F , then F = S(X)∗, where
S(X)∗ := {x ∈ X|aª x = x for any a ∈ S(X)}.

Proof. Let S(X)∩F = {1} and x ∈ F . Then by (b1) and Lemma 2.4,
we have [a, x]2 ∈ A for any a ∈ S(X). Since xª [a, x]2 = (aª x)ª 1 =
(aª1)ª(xª1) = xª(1ª1) = xª1 and F is a closed filter of X, we have
[a, x]2 ∈ F . Hence we get [a, x]2 = 1. Also, xª (aªx) = aª (xªx) = 1.
therefore aª x = x and so x ∈ S(X)∗, i.e.F ⊆ S(X)∗.

On the other hand, if X = S(X)⊕̄F , then S(X)∩F = {1}, and so F ⊆
S(X)∗. For any x ∈ S(X)∗, there is a ∈ S(X) such that x ≡ a(modF ) by
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Theorem 3.10. Thus we get aª x ∈ F . Note that aª x = x. Hence we
have S(X)∗ ⊆ F . Therefore F = S(X)∗. This completes the proof.

Definition 3.12. Let F1 and F2 be filters of X and X = F1⊕̄F2. If for
any a ∈ F1 and b ∈ F2, there exists x ∈ X such that x ≡ a(modF2) and
y ≡ b(modF1), then we say X is the direct sum of F1 and F2, denoted
by X = F1 ⊕ F2.

We remark thatDS(X) is generally not a filter of X. Let X := {1, a, b}
be a set with the following Cayley table.

ª 1 a b
1 1 a b
a 1 1 b
b b b 1

Then X = (X;ª, 1) is a WFI-algebra. Then DS(X) = {1, b} is not a
filter of X since bª a ∈ DS(X), b ∈ DS(X) and a 6∈ DS(X).

Theorem 3.13. If DS(X) is a filter of X, then X = S(X)⊕DS(X).

Proof. For any x ∈ X, let a ∈ B with x ¹ a. Then we have aª x ∈
S(X). Thus x ∈< S(X) ∪ DS(X) >, and so x =< S(X) ∪ DS(X) >.
Therefore we have X = S(X)⊕̄DS(X). Also, for any b ∈ S(X) and
p ∈ DS(X), putting x := (pª 1)ª b, we have

bª x = (pª 1)ª (bª b) = [p, 1]2 = p ∈ DS(X),

xª b = pª 1 ∈ DS(X).
Then x ≡ b(modDS(X)). On the other hand, we obtain

xª 1 = [p, 1]2 ª (bª 1) = [p, 1]3 = pª 1.

Then we get p ª x ∈ S(X) because b = 1 ª b ¹ (p ª 1) ª (p ª b) =
pª x, b ∈ S(X) and S(X) is a filter of X. Moreover, we have

xª p = xª [p, 1]2 = (pª 1)ª (xª 1) = 1 ∈ S(X).

So, x ≡ p(modS(X)). Therefore we have X = S(X) ⊕ DS(X). This
completes the proof.

4. Conclusion

As we know, the primary aim of the theory of WFI-algebras is to de-
termine the structure of all WFI-algebras. The main task of a structure
theorem is to find a complete system of invariants describing the WFI-
algebra up to isomorphism, or to establish some connection with other
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mathematics branches. In addition, the filter theory plays an important
role in studying WFI-algebras, and some interesting results have been
obtained by several authors. In this paper we investigate the theory of
decompositions in WFI-algebras, which is a useful tool for exploring the
structure of WFI-algebras. Now we consider the subdirect sum and the
direct sum of a filter family of a WFI-algebra (see Theorems 3.11 and
3.13). In the future we will discuss the direct product and the subdirect
product of a WFI-algebraic family.
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