• 제목/요약/키워드: diffusion barrier

검색결과 459건 처리시간 0.031초

Formation of a MnSixOy barrier with Cu-Mn alloy film deposited using PEALD

  • Moon, Dae-Yong;Hwang, Chang-Mook;Park, Jong-Wan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.229-229
    • /
    • 2010
  • With the scaling down of ultra large integrated circuits (ULSI) to the sub-50 nm technology node, the need for an ultra-thin, continuous and conformal diffusion barrier and Cu seed layer is increasing. However, diffusion barrier and Cu seed layer formation with a physical vapor deposition (PVD) method has become difficult as the technology node is reduced to 30 nm and beyond. Recent work on self-forming barrier processes using PVD Cu alloys have attracted great attention due to the capability of conformal ultra-thin barrier formation using a simple technique. However, as in the case of the conventional barrier and Cu seed layer, PVD of the Cu alloy seed layer will eventually encounter the difficulty in conformal deposition in narrow line trenches and via holes. Atomic layer deposition (ALD) has been known for its good step coverage and precise thickness control, and is a candidate technique for the formation of a thin conformal barrier layer and Cu seed layer. Conformal Cu-Mn seed layers were deposited by plasma enhanced atomic layer deposition (PEALD) at low temperature ($120^{\circ}C$), and the Mn content in the Cu-Mn alloys were controlled form 0 to approximately 10 atomic percent with various Mn precursor feeding times. Resistivity of the Cu-Mn alloy films decreased by annealing due to out-diffusion of Mn atoms. Out-diffused Mn atoms were segregated to the surface of the film and interface between a Cu-Mn alloy and $SiO_2$, resulting in self-formed $MnO_x$ and $MnSi_xO_y$, respectively. No inter-diffusion was observed between Cu and $SiO_2$ after annealing at $500^{\circ}C$ for 12 h, indicating an excellent diffusion barrier property of the $MnSi_xO_y$. The adhesion between Cu and $SiO_2$ was enhanced by the formation of $MnSi_xO_y$. Continuous and conductive Cu-Mn seed layers were deposited with PEALD into 32 nm $SiO_2$ trench, enabling a low temperature process, and the trench was perfectly filled using electrochemical plating (ECD) under conventional conditions. Thus, it is the resultant self-forming barrier process with PEALD Cu-Mn alloy film as a seed layer for plating Cu that has further potential to meet the requirement of the smaller than 30 nm node.

  • PDF

Diffusion Currents in the Amorphous Structure of Zinc Tin Oxide and Crystallinity-Dependent Electrical Characteristics

  • Oh, Teresa
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권4호
    • /
    • pp.225-228
    • /
    • 2017
  • In this study, zinc tin oxide (ZTO) films were prepared on indium tin oxide (ITO) glasses and annealed at different temperatures under vacuum to investigate the correlation between the Ohmic/Schottky contacts, electrical properties, and bonding structures with respect to the annealing temperatures. The ZTO film annealed at $150^{\circ}C$ exhibited an amorphous structure because of the electron-hole recombination effect, and the current of the ZTO film annealed at $150^{\circ}C$ was less than that of the other films because of the potential barrier effect at the Schottky contact. The drift current as charge carriers was similar to the leakage current in a transparent thin-film device, but the diffusion current related to the Schottky barrier leads to the decrease in the leakage current. The direction of the diffusion current was opposite to that of the drift current resulting in a two-fold enhancement of the cut-off effect of leakage drift current due to the diffusion current, and improved performance of the device with the Schottky barrier. Hence, the thin film with an amorphous structure easily becomes a Schottky contact.

Ti 쇼트키 배리어 다이오드의 Al 확산 방지를 위한 SC-1 세정 효과 (Effect of SC-1 Cleaning to Prevent Al Diffusion for Ti Schottky Barrier Diode)

  • 최진석;최여진;안성진
    • 한국재료학회지
    • /
    • 제31권2호
    • /
    • pp.97-100
    • /
    • 2021
  • We report the effect of Standard Clean-1 (SC-1) cleaning to remove residual Ti layers after silicidation to prevent Al diffusion into Si wafer for Ti Schottky barrier diodes (Ti-SBD). Regardless of SC-1 cleaning, the presence of oxygen atoms is confirmed by Auger electron spectroscopy (AES) depth profile analysis between Al and Ti-silicide layers. Al atoms at the interface of Ti-silicide and Si wafer are detected, when the SC-1 cleaning is not conducted after rapid thermal annealing. On the other hand, Al atoms are not found at the interface of Ti-SBD after executing SC-1 cleaning. Al diffusion into the interface between Ti-silicide and Si wafer may be caused by thermal stress at the Ti-silicide layer. The difference of the thermal expansion coefficients of Ti and Ti-silicide gives rise to thermal stress at the interface during the Al layer deposition and sintering processes. Although a longer sintering time is conducted for Ti-SBD, the Al atoms do not diffuse into the surface of the Si wafer. Therefore, the removal of the Ti layer by the SC-1 cleaning can prevent Al diffusion for Ti-SBD.

TiN의 충진처리가 확산방지막 특성에 미치는 영향(II) : Cu/TiN/Si 구조 (Effect of Stuffing of TiN on the Diffusion Barrier Property (II) : Cu/TiN/Si Structure)

  • 박기철;김기범
    • 한국재료학회지
    • /
    • 제5권2호
    • /
    • pp.169-177
    • /
    • 1995
  • Cu와 Si사이의 확산방지막으로 1000$\AA$ 두께의 TiN의 특성에 대하여 면저항 측정, 식각패임자국 관찰, X선 회절, AES, TEM 등을 이용하여 조사하였다. TiN 확산방지막은 $550^{\circ}C$, 1시간의 열처리 후에 Cu의 안쪽 확산으로 인해 Si(111)면을 따라 결정결함(전위)을 형성하고, 전위 주위에 Cu 실리사이드로 보이는 석출물들을 형성함으로써 파괴되었다. Al의 경우와는 달리 Si 패임자국이 형성되지 안흔 것으로부터 TiN확산방지막의 파괴는 Cu의 안쪽 확산에 의해서만 일어나는 것을 알 수 있었다. 또한, Al의 경우에는 우수한 확산방지막 특성을 보여주었던 충진처리된 TiN가 Cu의 경우에는 거의 효과가 없는 것을 알 수 있었다. 이것은 Al의 경우에는 TiN의 결정립계에 존재하는 $TiO_{2}$가 Al과 반응하여 $Al_{2}O_{3}$를 형성함으로써 Al의 확산을 방해하는 화학적 효과가 매우 크지만, Cu의 경우에는 CuO 또는 $Cu_{2}O$와 같은 Cu 산화물은$TiO_{2}$에 비해서 열역학적으로 불안정하기 때문에 이러한 화학적 효과를 기대할 수 없으며, 따라서 충진처리 효과가 거의 없는 것으로 이해된다.

  • PDF

PVD법으로 증착한 W-B-C-N 박막의 질소량에 따른 구조변화 연구 (Structure Behavior of Sputtered W-B-C-N Thin Film for various nitrogen gas ratios)

  • 송문규;이창우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.109-110
    • /
    • 2005
  • We have suggested sputtered W-C-N thin film for preventing thermal budget between semiconductor and metal. These results show that the W-C-N thin film has good thermal stability and low resistivity. In this study we newly suggested sputtered W-B-C-N thin diffusion barrier. In order to improve the characteristics, we examined the impurity behaviors as a function of nitrogen gas flow ratio. This thin film is able to prevent the interdiffusion during high temperature (700 to $1000^{\circ}C$) annealing process and has low resistivity ($\sim$200$\mu{\Omega}-cm$). Through the analysis of X-Ray diffraction, resistivity and XPS, we studied structure behavior of W-B-C-N diffusion barrier.

  • PDF

Cu/Ti(Ta)/NiSi 접촉의 열적안정성에 관한 연구 (A Study on the Thermal Stability of Cu/Ti(Ta)/NiSi Contacts)

  • 유정주;배규식
    • 한국재료학회지
    • /
    • 제16권10호
    • /
    • pp.614-618
    • /
    • 2006
  • The thermal stability of Cu/Ti(or Ta)/NiSi contacts was investigated. Ti(Ta)-capping layers deposited to form NiSi was utilized as the Cu diffusion barrier. Ti(Ta)/NiSi contacts was thermally stable upto $600^{\circ}C$. However when Cu/Ti(Ta)/NiSi contacts were furnace-annealed at $300{\sim}400^{\circ}C$ for 40 min., the Cu diffusion was found to be effectively suppressed, but NiSi was dissociated and then Ni diffused into the Cu layer to form Cu-Ni solutions. On the other hand, the Ni diffusion did not occur for the Al/Ti/NiSi system. The thermal instability of Cu/Ti(Ta)/NiSi contacts was attributed to the high heat of solution of Ni in Cu.

Ba-페라이트/$SiO_2$ 자성박막에서 ${\alpha}-Al_2O_3$ buffer 층의 역할 (Role of ${\alpha}-Al_2O_3$ buffer layer in $Ba-ferrite/SiO$ magnetic thin films)

  • 조태식;정지욱;권호준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.267-270
    • /
    • 2003
  • We have studied the interfacial diffusion phenomena and the role of ${\alpha}-Al_2O_3$ buffer layer as a diffusion barrier in the $Ba-ferrite/SiO_2$ magnetic thin films for high-density recording media. In the interface of amorphous Ba-ferrite ($1900-{\AA}-thick)/SiO_2$ thin film during annealing, the interfacial diffusion started to occur at ${\sim}700^{\circ}C$. As the annealing temperature increased up to $800^{\circ}C$, the interfacial diffusion abruptly proceeded resulting in the high interface roughness and the deterioration of the magnetic properties. In order to control the interfacial diffusion at the high temperature, we introduced ${\alpha}-Al_2O_3$ buffer layer ($110-{\AA}-thick$) in the interface of $Ba-ferrite/SiO_2$ thin film. During the annealing of $Ba-ferrite/{\alpha}-Al_2O_3/SiO_2$ thin film even at ${\sim}800^{\circ}C$, the interface was very smooth. The smooth interface of the film was also clearly shown by the cross-sectional FESEM. The magnetic properties, such as saturation magnetization 3nd intrinsic coercivity, were also enhanced, due to the inhibition of interfacial diffusion by the ${\alpha}-Al_2O_3$ buffer layer. Our study suggests that the ${\alpha}-Al_2O_3$ buffer layer act as a useful interfacial diffusion barrier in the $Ba-ferrite/SiO_2$ thin films.

  • PDF

Investigation of TaNx diffusion barrier properties using Plasma-Enhanced ALD for copper interconnection

  • 한동석;문대용;권태석;김웅선;황창묵;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.178-178
    • /
    • 2010
  • With the scaling down of ULSI(Ultra Large Scale Integration) circuit of CMOS(Complementary Metal Oxide Semiconductor)based electronic devices, the electronic devices become more faster and smaller size that are promising field of semiconductor market. However, very narrow line width has some disadvantages. For example, because of narrow line width, deposition of conformal and thin barrier is difficult. Besides, proportion of barrier width is large, thus resistance is high. Conventional PVD(Physical Vapor Deposition) thin films are not able to gain a good quality and conformal layer. Hence, in order to get over these side effects, deposition of thin layer used of ALD(Atomic Layer Deposition) is important factor. Furthermore, it is essential that copper atomic diffusion into dielectric layer such as silicon oxide and hafnium oxide. If copper line is not surrounded by diffusion barrier, it cause the leakage current and devices degradation. There are some possible methods for improving the these secondary effects. In this study, TaNx, is used of Tertiarybutylimido tris (ethylamethlamino) tantalum (TBITEMAT), was deposited on the 24nm sized trench silicon oxide/silicon bi-layer substrate with good step coverage and high quality film using plasma enhanced atomic layer deposition (PEALD). And then copper was deposited on TaNx barrier using same deposition method. The thickness of TaNx was 4~5 nm. TaNx film was deposited the condition of under $300^{\circ}C$ and copper deposition temperature was under $120^{\circ}C$, and feeding time of TaNx and copper were 5 seconds and 5 seconds, relatively. Purge time of TaNx and copper films were 10 seconds and 6 seconds, relatively. XRD, TEM, AFM, I-V measurement(for testing leakage current and stability) were used to analyze this work. With this work, thin barrier layer(4~5nm) with deposited PEALD has good step coverage and good thermal stability. So the barrier properties of PEALD TaNx film are desirable for copper interconnection.

  • PDF

혼합기체 sputtering 법으로 증착된 Cu 확산방지막으로의 Ti-Si-N 박막의 특성 연구 (A Study of Reactively Sputtered Ti-Si-N Diffusion Barrier for Cu Metallization)

  • 박상기;이재갑
    • 한국재료학회지
    • /
    • 제9권5호
    • /
    • pp.503-508
    • /
    • 1999
  • We have investigated the physical and diffusion barrier property of Ti-Si-N film for Cu metallization. The ternary compound was deposited by using reactive rf magnetron sputtering of a TiSi$_2$target in an Ar/$N_2$gas mixture. Resistivities of the films were in range of 358$\mu$$\Omega$-cm, to 307941$\mu$$\Omega$-cm, and tended to increase with increasing the $N_2$/Ar flow rate ratio. The crystallization of the Ti-Si-N compound started to occur at 100$0^{\circ}C$ with the phases of TiN and Si$_3$N$_4$identified by using XRD(X-ray Diffractometer). The degree of the crystallization was influenced by the $N_2$/Ar flow ratio. The diffusion barrier property of Ti-Si-N film for Cu metallization was determined by AES, XRD and etch pit by secco etching, revealing the failure temperature of 90$0^{\circ}C$ in 43~45at% of nitrogen content. In addition, the very thin compound (10nm) with 43~45at% nitrogen content remained stable up to $700^{\circ}C$. Furthermore, thermal treatment in vacuum at $600^{\circ}C$ improved the barrier property of the Ti-Si-N film deposited at the $N_2$(Ar+$N_2$) ratio of 0.05. The addition of Ti interlayer between Ti-Si-N films caused the drastic decrease of the resistivity with slight degradation of diffusion barrier properties of the compound.

  • PDF

THE EFFECT OF SI-RICH LAYER COATING ON U-MO VS. AL INTERDIFFUSION

  • Ryu, Ho-Jin;Park, Jae-Soon;Park, Jong-Man;Kim, Chang-Kyu
    • Nuclear Engineering and Technology
    • /
    • 제43권2호
    • /
    • pp.159-166
    • /
    • 2011
  • Si-rich-layer-coated U-7 wt%Mo plates were prepared in order to evaluate the diffusion barrier performance of the Si-rich layer in U-Mo vs. Al interdiffusion. Pure Si powder was used for coating the U-Mo plates by annealing at $900^{\circ}C$ for 1 h under vacuum of approximately 1 Pa. Si-rich layers containing more than 60 at% of Si were formed on U-7 wt%Mo plates. Diffusion couple tests were conducted in a muffle furnace at $560-600^{\circ}C$ under vacuum using Si-rich-layer-coated U-Mo plates and pure Al plates. Diffusion couple tests using uncoated U-Mo plates and Al-(0, 2 or 5 wt%)Si plates were also conducted for comparison. Si-rich-layer coatings were more effective in suppressing the interaction during diffusion couple tests between coated U-Mo plate and Al, when compared with U-Mo vs. Al-Si diffusion couples, since only small amounts of Al in the coating could be found after the diffusion couple tests. Si-rich-layer-coated U-7wt%Mo particles were also prepared using the same technique for U-7 wt%Mo plates to observe the microsturctures of the coated particles.