DOI QR코드

DOI QR Code

THE EFFECT OF SI-RICH LAYER COATING ON U-MO VS. AL INTERDIFFUSION

  • Ryu, Ho-Jin (Research Reactor Fuel Development Division, Korea Atomic Energy Research Institute) ;
  • Park, Jae-Soon (Research Reactor Fuel Development Division, Korea Atomic Energy Research Institute) ;
  • Park, Jong-Man (Research Reactor Fuel Development Division, Korea Atomic Energy Research Institute) ;
  • Kim, Chang-Kyu (Research Reactor Fuel Development Division, Korea Atomic Energy Research Institute)
  • Received : 2010.07.05
  • Accepted : 2010.11.12
  • Published : 2011.04.25

Abstract

Si-rich-layer-coated U-7 wt%Mo plates were prepared in order to evaluate the diffusion barrier performance of the Si-rich layer in U-Mo vs. Al interdiffusion. Pure Si powder was used for coating the U-Mo plates by annealing at $900^{\circ}C$ for 1 h under vacuum of approximately 1 Pa. Si-rich layers containing more than 60 at% of Si were formed on U-7 wt%Mo plates. Diffusion couple tests were conducted in a muffle furnace at $560-600^{\circ}C$ under vacuum using Si-rich-layer-coated U-Mo plates and pure Al plates. Diffusion couple tests using uncoated U-Mo plates and Al-(0, 2 or 5 wt%)Si plates were also conducted for comparison. Si-rich-layer coatings were more effective in suppressing the interaction during diffusion couple tests between coated U-Mo plate and Al, when compared with U-Mo vs. Al-Si diffusion couples, since only small amounts of Al in the coating could be found after the diffusion couple tests. Si-rich-layer-coated U-7wt%Mo particles were also prepared using the same technique for U-7 wt%Mo plates to observe the microsturctures of the coated particles.

Keywords

References

  1. J. L. Snelgrove, G. L. Hofman, M. K. Meyer, C. L. Trybus and T. C. Wiencek, “Development of Very-high-density Low-enriched-uranium Fuels,” Nucl. Eng. Des., 178, 119 (1997). https://doi.org/10.1016/S0029-5493(97)00217-3
  2. G. L. Hofman, Y. S. Kim, M. R. Finlay, and J. L. Snelgrove, S. L. Hayes, M. K. Meyer, and C. R. Clark, “Recent Observations at the Postirradiation Examination of Low- Enriched U-Mo Miniplates Irradiated to High Burnup,” Proceedings of International Meeting on Reduced Enrichment for Research and Test Reactors (RERTR), Chicago, USA, Oct. 5-10, 2003.
  3. M. K. Meyer, G. L. Hofman, S. L. Hayes, C. R. Clark, T. C. Wiencek, J. L. Snelgrove, R. V. Strain and K. -H. Kim, “Low-temperature Irradiation Behavior of Uranium– molybdenum Alloy Dispersion Fuel,” J. Nucl. Mater., 304, 221 (2002). https://doi.org/10.1016/S0022-3115(02)00850-4
  4. S. Van den Berghe, W. Van Renterghem and A. Leenaers, “Transmission electron microscopy investigation of irradiated U-7wt%Mo dispersion fuel,” J. Nucl. Mater. 375, 340 (2008). https://doi.org/10.1016/j.jnucmat.2007.12.006
  5. H. J. Ryu, Y. S. Kim, G. L. Hofman, “Amorphization of the interaction products in U–Mo/Al dispersion fuel during irradiation,” J. Nucl. Mater. 385, 623 (2009). https://doi.org/10.1016/j.jnucmat.2009.01.306
  6. C. K. Kim, J. M. Park, and H. J. Ryu, “Use of a Centrifugal Atomization Process in the Development of Research Reactor Fuel,” Nucl. Eng. Technol., 39, 617 (2007). https://doi.org/10.5516/NET.2007.39.5.617
  7. H. J. Ryu, Y. S. Kim, J. M. Park, H. T. Chae, C. K. Kim, “Performance Evaluation of U-Mo/Al Dispersion Fuel by Considering a Fuel-Matrix Interaction,” Nucl. Eng. Technol. 40, 409 (2008). https://doi.org/10.5516/NET.2008.40.5.409
  8. Y. S. Kim, G. L Hofman, H. J. Ryu, and J. Rest, “Thermodynamic and Metallurgical Considerations to Stabilizing the Interaction Layers of U-Mo/Al Dispersion Fuel,” Proceedings of International Meeting on Reduced Enrichment for Research and Test Reactors (RERTR), Boston, USA, Nov. 6-10, 2005.
  9. G. L. Hofman, Y. S. Kim, H. J. Ryu, D. Wachs, and M. R. Finlay, “Results of Low-Enriched U-Mo Miniplates from RERTR-6 and -7A Irradiation,” Proceedings of International Meeting on Reduced Enrichment for Research and Test Reactors (RERTR), Cape Town, South Africa, Oct. 29-Nov. 2, 2006.
  10. H. J. Ryu, J. M. Park, C. K. Kim and Y. S. Kim, “Analyses on Interaction Products of U-Mo/Al-Si Dispersion Fuel for an Estimation of the Required Silicon Content,” Proceedings of International Meeting on Reduced Enrichment for Research and Test Reactors (RERTR), Washington, D.C., USA, Oct. 5-9, 2008.
  11. A. Leenaers, S. Van Den Berghe, S. Dubois, J. Noirot, M. Ripert, and P. Lemoine, “Microstructural Analysis of Irradiated Atomized U(Mo) Dispersion Fuel in an Al Matrix with Si Addition,“ Transaction of RRFM-2008, Hamburg, Germany, Mar. 2-5, 2008.
  12. J. M. Park, H. J. Ryu, Y. S. Lee, S. J. Oh, C. K. Kim , B. O. Yoo, Y. H. Jung, C. G. Seo, C. S. Lee and H. T. Chae, PIE Results of the KOMO-3 Fuels and the Future Irradiation Test Plan,” Proceedings of International Meeting on Reduced Enrichment for Research and Test Reactors (RERTR), Washington, D.C., USA, Oct. 5-9, 2008.
  13. A. Leenaers, C. Detavernier, S. Van den Berghe, “The effect of silicon on the interaction between metallic uranium and aluminum: A 50 year long diffusion experiment,” J. Nucl. Mater. 381, 242 (2008). https://doi.org/10.1016/j.jnucmat.2008.08.018
  14. H. J. Ryu, J. S. Park, J. S. Shim, Y. S. Lee, J. M. Park, and C. K. Kim, “Fabrication of Coated U-Mo Powder and the Effect of Si Content on the Interaction Layer Growth,” Proceedings of International Meeting on Reduced Enrichment for Research and Test Reactors (RERTR), Beijing, China, Nov. 1-5, 2009.
  15. S. Van Den Berghe, A. Leenaers, and C. Detavernier, “SELENIUM Fuel: Surface Engineering of U(Mo) Particles to Optimise Fuel Performance,” Transaction of RRFM-2010, Marrakech, Morocco, Mar. 21-25, 2010.
  16. M. I. Mirandou, S. F. Aricó, S. N. Balart, and L. M. Gribaudo, “Characterization of the interaction layer in diffusion couples U-7wt.%Mo/Al 6061 alloy at 550 C and 340 ${^{\circ}C}$.: Effect of the $\gamma$U(Mo) cellular decomposition,” Materials Characterization, 60, 888 (2009). https://doi.org/10.1016/j.matchar.2009.02.010
  17. J. Allenour, H. Palancher, X. Iltis, M. Cornen, O. Tougait, R. Tucoulou, E. Welcomme, Ph. Martin, C. Valot, F. Charollais, M.C. Anselmet, and P. Lemoine, “U-Mo/Al-Si interaction: Influence of Si concentration,” J. Nucl. Mater., 399, 189 (2010). https://doi.org/10.1016/j.jnucmat.2010.01.018
  18. J. Gan, D. D. Keiser Jr., D. M. Wachs, A. B. Robinson, B. D. Miller, and T. R. Allen, “Transmission electron microscopy characterization of irradiated U–7Mo/Al–2Si dispersion fuel,” J. Nucl. Mater. 396, 234 (2010). https://doi.org/10.1016/j.jnucmat.2009.11.015
  19. J. M. Park, H. J. Ryu, K. H. Kim, D. B. Lee, Y. S. Lee, J. S. Lee, B. S. Seong, C. K. Kim, and M. Cornen, “Neutron diffraction analyses of U–(6–10 wt.%)Mo alloy powders fabricated by centrifugal atomization,” J. Nucl. Mater., 397, 27 (2010). https://doi.org/10.1016/j.jnucmat.2009.11.026
  20. J. E. Garces, G. Bozzolo, G. Hofman, and J. Rest, “Modeling of multicomponent systems: Role of Mo and Si on the interaction of Al and $\gamma$-UMo,” Computational Mater. Sci., 40, 6 (2007). https://doi.org/10.1016/j.commatsci.2006.10.017

Cited by

  1. Coating thickness determination in highly absorbent core–shell systems vol.45, pp.5, 2012, https://doi.org/10.1107/S0021889812031159
  2. Metallurgical considerations for the fabrication of low-enriched uranium dispersion targets with a high density for 99Mo production vol.305, pp.1, 2015, https://doi.org/10.1007/s10967-014-3838-y
  3. Atomization of UMo Particles under Nitrogen Atmosphere vol.06, pp.01, 2016, https://doi.org/10.4236/wjnst.2016.61004