Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.2.97

Effect of SC-1 Cleaning to Prevent Al Diffusion for Ti Schottky Barrier Diode  

Choi, Jinseok (Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology)
Choi, Yeo Jin (Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology)
An, Sung Jin (Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology)
Publication Information
Korean Journal of Materials Research / v.31, no.2, 2021 , pp. 97-100 More about this Journal
Abstract
We report the effect of Standard Clean-1 (SC-1) cleaning to remove residual Ti layers after silicidation to prevent Al diffusion into Si wafer for Ti Schottky barrier diodes (Ti-SBD). Regardless of SC-1 cleaning, the presence of oxygen atoms is confirmed by Auger electron spectroscopy (AES) depth profile analysis between Al and Ti-silicide layers. Al atoms at the interface of Ti-silicide and Si wafer are detected, when the SC-1 cleaning is not conducted after rapid thermal annealing. On the other hand, Al atoms are not found at the interface of Ti-SBD after executing SC-1 cleaning. Al diffusion into the interface between Ti-silicide and Si wafer may be caused by thermal stress at the Ti-silicide layer. The difference of the thermal expansion coefficients of Ti and Ti-silicide gives rise to thermal stress at the interface during the Al layer deposition and sintering processes. Although a longer sintering time is conducted for Ti-SBD, the Al atoms do not diffuse into the surface of the Si wafer. Therefore, the removal of the Ti layer by the SC-1 cleaning can prevent Al diffusion for Ti-SBD.
Keywords
Schottky barrier diode; Al diffusion; SC-1; Ti silicide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Schottky, Naturwissenschaften, 26, 843 (1938).   DOI
2 S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3th ed., p. 134, Wiley, Newyork, USA, (2007).
3 D. Perrone, M. Naretto, S. Ferrero, L. Scaltrito and C. F. Pirri, Mater. Sci. Forum, 615-617, 647 (2009).   DOI
4 W. D. Bosscher, R. L. V. Meirhaeghe, P. L. Hanselaer, L. Caenepeel, W. H. Laflere and F. Cardon, Semicond. Sci. Technol., 1, 376 (1986).   DOI
5 W. D. Bosscher, R. L. V. Meirhaeghe, A. D. Laere, W. H. Laflere and F. Cardon, Solid State Electron., 31, 945 (1988).   DOI
6 J. S. Kim, H. H. Choi, S. H. Son and S. Y. Choi, Appl. Phys. Lett., 79, 860 (2001).   DOI
7 W.-F. Wu, K.-C. Tsai, C.-G. Chao, J.-C. Chen and K.-L. Ou, J. Electron. Mater., 34, 1150 (2005).   DOI
8 J. Y. Park, J. Y. Kim, Y. D. Kim, H. Jeon and Y. Kim, J. Korean Phys. Soc., 42, 817 (2003).
9 C. Y. Ting and M. Wittmer, J. Appl. Phys., 54, 937 (1983).   DOI
10 W. Kern, J. Electrochem. Soc., 137, 1887 (1990).   DOI
11 J. F. Jongste, O. B. Loopstra, G. C. A. M. Janssen and S. Radelaar, J. Appl. Phys., 73, 2816 (1993)   DOI