DOI QR코드

DOI QR Code

Diffusion Currents in the Amorphous Structure of Zinc Tin Oxide and Crystallinity-Dependent Electrical Characteristics

  • Oh, Teresa (Department of Semiconductor Engineering, Cheongju University)
  • Received : 2017.03.03
  • Accepted : 2017.06.18
  • Published : 2017.08.25

Abstract

In this study, zinc tin oxide (ZTO) films were prepared on indium tin oxide (ITO) glasses and annealed at different temperatures under vacuum to investigate the correlation between the Ohmic/Schottky contacts, electrical properties, and bonding structures with respect to the annealing temperatures. The ZTO film annealed at $150^{\circ}C$ exhibited an amorphous structure because of the electron-hole recombination effect, and the current of the ZTO film annealed at $150^{\circ}C$ was less than that of the other films because of the potential barrier effect at the Schottky contact. The drift current as charge carriers was similar to the leakage current in a transparent thin-film device, but the diffusion current related to the Schottky barrier leads to the decrease in the leakage current. The direction of the diffusion current was opposite to that of the drift current resulting in a two-fold enhancement of the cut-off effect of leakage drift current due to the diffusion current, and improved performance of the device with the Schottky barrier. Hence, the thin film with an amorphous structure easily becomes a Schottky contact.

Keywords

References

  1. G. Kenugapal and S. J. Kim, Current Appl. Phys., 11, S381 (2011). [DOI: http://dx.doi.org/10.1016/j.cap.2011.03.030]
  2. S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki1, Appl. Phys. Lett., 93, 123309 (2008). [DOI: http:// dx.doi.org/10.1063/1.2989125]
  3. H. Kim, Trans. Electr. Electron. Mater., 16, 285 (2015). [DOI: http://dx.doi.org/10.4313/TEEM.2015.16.5.285E]
  4. S. W. Tsao, T. C. Chang, S. Y. Huang, M. C. Chen, S. C. Chen, C. T. Tsai, Y. J. Kuo, Y. C. Chen, and W. C. Wub, Solid-State Electronics, 54, 1497 (2010). [DOI: http://dx.doi.org/10.1016/j.sse.2010.06.027]
  5. D. W. Jeong, J. J. Kim, and J. O Lee, J. Korean Phys. Soc., 59, 3133 (2011). [DOI: http://dx.doi.org/10.3938/jkps.59.3133]
  6. J. Heo, H. J. Kim, J. H. Han, and J. W. Shon, Thin Solid Films, 515, 5035 (2007). [DOI: http://dx.doi.org/10.1016/j.tsf.2006.10.095]
  7. T. Oh, J. Nanosci. Nanotechnol., 14, 9047. (2014). [DOI: http://dx.doi.org/10.1166/jnn.2014.10071]
  8. L. S. Vlasenko and G. D. Watkins, Phys. Lett. B., 71, 125210 (2005). [DOI: https://doi.org/10.1103/PhysRevB.71.125210]
  9. J. Maserjian, J. Vac. Sci. Technol., 11, 996 (1974). https://doi.org/10.1116/1.1318719
  10. T. Oh, Materials Research Bulletin, 77, 1 (2016). [DOI: http://dx.doi.org/10.1016/j.materresbull.2015.11.038]
  11. V. H. Nguyen and H. B. Gu, Trans. Electr. Electron. Mater., 17, 139 (2016). [DOI: http://dx.doi.org/10.4313/TEEM.2016.17.3.139]
  12. T. Oh, Trans. Electr. Electron. Mater., 17, 104 (2016). [DOI: http://dx.doi.org/10.4313/TEEM.2016.17.2.104]