Effect of Stuffing of TiN on the Diffusion Barrier Property (II) : Cu/TiN/Si Structure

TiN의 충진처리가 확산방지막 특성에 미치는 영향(II) : Cu/TiN/Si 구조

  • Park, Gi-Cheol (Dept.of Materials Science Engineering, Seoul National University) ;
  • Kim, Gi-Beom (Dept.of Materials Science Engineering, Seoul National University)
  • Published : 1995.04.01

Abstract

The diffusion barrier property of 100-nm-thick titanium nitride (TiN) film between Cu and Si was investigated using sheet resistance measurements, etch-pit observation, x-ray diffractometry, Auger electron spectroscopy, and transmission electron microscopy. The TiN barrier fails due to the formation of crystalline defects (dislocations) and precipitates (presumably Cu-silicides) in the Si substrate which result from the predominant in-diffusion of Cu through the TiN layer. In contrast with the case of Al, it is identified that the TiN barrier fails only the in-diffusion of Cu because there is no indication of Si pits in the Si substrate. In addition, it appears that the stuffing of TiN does not improve the diffusion barrier property in the Cu/TiN/Si structure. This indicates that in the case of Al, the chemical effect that impedes the diffusion of Al by the reaction of Al with $TiO_{2}$ which is present in the grain boundaries of TIN is very improtant. On the while, in the case of Cu, there is no chemical effect because Cu oxides, such as $Cu_{2}O$ or CuO, is thermodynamically unstable in comparison with $TiO_{2}$. For this reason, it is considered that the effect of stuffing of TiN on the diffusion barrier property is not significant in the Cu/ TiN/Si structure.

Cu와 Si사이의 확산방지막으로 1000$\AA$ 두께의 TiN의 특성에 대하여 면저항 측정, 식각패임자국 관찰, X선 회절, AES, TEM 등을 이용하여 조사하였다. TiN 확산방지막은 $550^{\circ}C$, 1시간의 열처리 후에 Cu의 안쪽 확산으로 인해 Si(111)면을 따라 결정결함(전위)을 형성하고, 전위 주위에 Cu 실리사이드로 보이는 석출물들을 형성함으로써 파괴되었다. Al의 경우와는 달리 Si 패임자국이 형성되지 안흔 것으로부터 TiN확산방지막의 파괴는 Cu의 안쪽 확산에 의해서만 일어나는 것을 알 수 있었다. 또한, Al의 경우에는 우수한 확산방지막 특성을 보여주었던 충진처리된 TiN가 Cu의 경우에는 거의 효과가 없는 것을 알 수 있었다. 이것은 Al의 경우에는 TiN의 결정립계에 존재하는 $TiO_{2}$가 Al과 반응하여 $Al_{2}O_{3}$를 형성함으로써 Al의 확산을 방해하는 화학적 효과가 매우 크지만, Cu의 경우에는 CuO 또는 $Cu_{2}O$와 같은 Cu 산화물은$TiO_{2}$에 비해서 열역학적으로 불안정하기 때문에 이러한 화학적 효과를 기대할 수 없으며, 따라서 충진처리 효과가 거의 없는 것으로 이해된다.

Keywords

References

  1. Extended Abstract of 48th Fall Meeting, Jpn. Soc. Appl. Phys. H. Miyazaki;K. Hinode;Y. Homma;K. Mukai
  2. Appl. Phys. v.A30 no.1 E.R. Weber
  3. Phys. Rev. v.96 C.S. Fuller;J.C. Severins
  4. Phys. Rev. v.B41 S.K. Estreicher
  5. Phys. Rev. v.B44 M.O. Aboelfotoh
  6. Annu. Rev. Mater. Sci. v.10 J.W. Chen;A.G. Miles
  7. Digest of Technical Papers, Symposium on VLSI technologies N. Awaya;Y. Arita
  8. Thin Solid Films v.150 R.E. Thomas;K.J. Guo;D.B. Aaron;E.A. Dobisz;J.H. Perepezko;J.D. Wiley
  9. Appl. Surf. Sci. v.26 R.E. Thomas;J.H. Perepezko;J.D. Wiley
  10. J. Appl. Pys. v.71 K. Holloway;P.M. Fryer;C. Cabal, Jr.;J.M. Harper;P.J. Bailey;K.H. Kelleher
  11. J. Vac. Sci. Technol. v.A10 P. Catania;J.P. Doyle;J.J. Cuomo
  12. J. Appl. Phys. v.73 L.A. Clevenger;N.A. Bojarczuk;K. Holloway;J.M.E. Harper;C. Cabral, Jr.;R.G. Schad;F. Cardone;L. Stlot
  13. J. Electrochem. Soc. v.138 C.S. Choi;G.A. Ruggles;A.S. Shah;G.C.Xing;C.M. Osburn;J. D. Hunn
  14. J. Appl. Phys. v.70 E. Kolawa;J.S. Chen;J.S. Reid;P.J. Pokela;M.-A. Nicolet
  15. J. Appl. Phys. v.68 S.Q. Wang;I. Raaijmakers;B.J. Burrow;S. Suthar;S. Redkar;K.-B. Kim
  16. Jpn. Soc. Appl. Phys. 39th Spring Meeting, Ext. Abstracts M. Suwa;K. Kudoo;S. Fukada
  17. J. Appl. Phys. v.68 J.O. Olwolafe;J. Li;J.W. Mayer
  18. J. Appl. Phys. v.72 J.O. Olowolafe;C.J. Mogab;R.B. Gregory;M. Kottke
  19. Appl. Phys. Lett. v.47 W. Sinke;G.P.A. Frijlink;F.W. Saris
  20. Surf. Interface Anal. v.14 S.E. Hornstrom;A. Charai;O. Thomas;L. Krusin-Elbaum;P.M. Fryer;J.M.E. Harper;S. Gong;A. Robertsson
  21. 한국재료화학지 v.5 박기철;김기범
  22. Silicon Processing for the VLSI Era v.1 S. Wolf;R.N. Tauger
  23. Research Monograph no.4 Effect of Impurities in Copper S.L. Archbult;W.E. Prytherch;H.W. Brownsdon;C.H. Desch
  24. J. Vac. Sci. Technol. v.A4 L. Soriano;M. Abbate;J.C. Fuggle;P. Prieto;C. Jimenez;L. Galan;S. Hofmann
  25. American Chemical Socirty and American Institute of Physics for the National Bureau of Standards JANAF Thermochemical Tables M.W. Chase, Jr.;C.A. Davis;J.R. Downey;Jr;D.J. Frurip;R.A. McDonald;A.N. Syverud
  26. J. Phys. Chem. Solids v.3 C.J. Gallagher