• Title/Summary/Keyword: differential amplifier

Search Result 238, Processing Time 0.02 seconds

Design of Magneto-Operational Amplifier Using Hall Device (Hall 소자를 이용한 자기 연산 증폭기 설계)

  • Baek, Kyoung-Il;Lee, Sang-Hun;Nam, Tae-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.13-21
    • /
    • 1992
  • We have constructed the magneto-operational amplifier(MOP) using the advantages of Hall device and an operational amplifier. The MOP necessarily requires a high impedance circuit, a differential-to-single-ended convert-sion circuit and feedback-input-element for operational amplifier characteristics. We have presented a new differential-to-single-ended conversion operational amplifier(DSCOP) having such characteristics. We have designed the MOP using the DSCOP and Hall device and simulated its characteristics, and finally we have constructed the system with discrete elements, and measured its magnetic characteristics.

  • PDF

1.9-GHz CMOS Power Amplifier using Adaptive Biasing Technique at AC Ground

  • Kang, Inseong;Yoo, Jinho;Park, Changkun
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.4
    • /
    • pp.285-289
    • /
    • 2019
  • A 1.9-GHz linear CMOS power amplifier is presented. An adaptive bias circuit (ABC) that utilizes an AC ground to detect the power level of the input signal is proposed to enhance the linearity and efficiency of the power amplifier. The ABC utilizes the second harmonic component as the input to mitigate the distortion of the fundamental signal. The input power level of the ABC was detected at the AC ground located at the VDD node of the power amplifier. The output of the ABC was fed into the inputs of the power stage. The input signal distortion was mitigated by detecting the input power level at the AC ground. The power amplifier was designed using a 180 nm RFCMOS process to evaluate the feasibility of the application of the proposed ABC in the power amplifier. The measured output power and power-added efficiency were improved by 1.7 dB and 2.9%, respectively.

Post-Linearization of Differential CMOS Low Noise Amplifier Using Cross-Coupled FETs

  • Kim, Tae-Sung;Kim, Seong-Kyun;Park, Jin-Sung;Kim, Byung-Sung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.4
    • /
    • pp.283-288
    • /
    • 2008
  • A post-linearization technique for the differrential CMOS LNA is presented. The proposed method uses an additional cross-coupled common-source FET pair to cancel out the third-order intermodulation ($IM_3$) current of the main differential amplifier. This technique is applied to enhance the linearity of CMOS LNA using $0.18-{\mu}m$ technology. The LNA achieved +10.2 dBm IIP3 with 13.7 dB gain and 1.68 dB NF at 2 GHz consuming 11.8 mA from a 1.8-V supply. It shows IIP3 improvement by 6.6 dB over the conventional cascode LNA without the linearizing circuit.

A Study on Implementation of Linear 25Watts High Power Amplifier for VDR (VDR을 위한 선형 25Watts 고출력 증폭기 구현에 관한 연구)

  • Choi, Jun-Su;Hur, Chang-Wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.389-391
    • /
    • 2011
  • This paper has been studied about design of linear 25Watt Power amplifier for VDR(VHF Data Radio). VDR's frequency band is 117.975~137MHz, and CSMA(Carrier Sense Multiple Access), D8PSK(Differential Eight Phase Shift Keyed), 25KHz's channel bandwidth use. It also stated in DO-281A MOPS output power, symbol constellation error, spurious emissions, adjacent channel power must be met. HPA is designed to meet DO-281A standard.

  • PDF

Design of V-Band Differential Low Noise Amplifier Using 65-nm CMOS (65-nm CMOS 공정을 이용한 V-Band 차동 저잡음 증폭기 설계)

  • Kim, Dong-Wook;Seo, Hyun-Woo;Kim, Jun-Seong;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.10
    • /
    • pp.832-835
    • /
    • 2017
  • In this paper, V-band differential low noise amplifier(LNA) using 65-nm CMOS process for high speed wireless data communication is presented. The LNA is composed of 3-stage common-source differential amplifiers with neutralization of feedback capacitances using MOS capacitors and impedance matching utilizing transformers. The fabricated LNA has a peak gain of 23 dB at 63 GHz and 3 dB bandwidth of 6 GHz. The chip area of LNA is $0.3mm^2$ and the LNA consumes 32 mW DC power from 1.2 V supply voltage.

The Design of 128 Channels Cardiac-Activation Pre-Amplifier (128 채널 심장전기도 전치 증폭기의 설계)

  • Yoo, Sun-Kook;Chang, Byung-Chul;Jung, Dong-Il;Han, Young-Oh
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.11
    • /
    • pp.550-556
    • /
    • 2001
  • The computerized cardiac analysis system, which acquires and analyzes the electrical activation signal propagating along the surface of the heart, is indispensible equipment for the open heart surgery and electrical cardiac study. In this paper, the design requirement and the electrical circuit analysis are performed to construct the multi-channel cardiac activation pre-amplifier necessary for a signal conditioning circuit. The general 64 channel configuration is expanded into 128 channels to enhance the spatial resolution on the mapped surface of the heart. The 128 channels pre-amplifier consists of input circuit, differential amplifier, right leg driven circuit and isolation part. It has distinct features; high voltage protection, leakage current limitation, isolation and the maximization of common mode rejection ratio with respect to the half-cell potential difference due to different electrode materials. The final pre-amplifier circuit is assembled with 8 boards, each of which composing of 16 channels.

  • PDF

The Development of Low-noise EEG Preamplifier (저잡음 뇌파 전치 증폭기의 개발)

  • Yoo, S.K.;Kim, N.H.;Kim, S.H.;Song, J.S.;Ahn, C.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.68-70
    • /
    • 1995
  • A low-noise pre-amplifier is developed for use in Topographic Brain Mapping system. It consists of signal generator, signal amplifier with a impedance converter, shield driver, body driver, differential amplifier, and isolation amplifier. Pre-amplifier circuit is designed with the concept of isolation and active body and shield driver. This amplifier shows the good noise behavior, high CMRR, high input impedance, low leakage current and high IMRR.

  • PDF

CMOS Power Amplifier for PCS (PCS 용 CMOS 전력 증폭기)

  • 윤영승;주리아;손영찬;유상대
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.1163-1166
    • /
    • 1999
  • In this paper, A CMOS power amplifier for PCS is designed with 0.65-$\mu\textrm{m}$ CMOS technology. Differential cascode structure is used which has good reverse isolation and wide voltage swing. This amplifier circuits consist of three stages which are power amplification stage, driver stage and power control stage. We obtain output power of 30 ㏈m, IMD3 of -31㏈c and efficiency of 30 % at input power of 4 ㏈m.

  • PDF

Design of Low Distortion Class E Amplifier with Frequency of 6.78MHz (6.78MHz 저 왜율 Class E 증폭기의 설계)

  • Yun, Jin;Chung, Se-Kyo
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.459-460
    • /
    • 2020
  • The design of a low distortion class E amplifier with a frequency of 6.78MHz for a wireless power transfer is presented. The amplifier with a differential out is designed to reduce the harmonics of the output current. The harmonic characteristics of various types of the class E amplifiers are compared through the simulation study.

  • PDF

Design of 94-GHz High-Gain Differential Low-Noise Amplifier Using 65-nm CMOS (65-nm CMOS 공정을 이용한 94 GHz 고이득 차동 저잡음 증폭기 설계)

  • Seo, Hyun-woo;Park, Jae-hyun;Kim, Jun-seong;Kim, Byung-sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.393-396
    • /
    • 2018
  • Herein, a 94-GHz low-noise amplifier (LNA) using the 65-nm CMOS process is presented. The LNA is composed of a four-stage differential common-source amplifier and impedance matching is accomplished with transformers. The fabricated LNA chip shows a peak gain of 25 dB at 94 GHz and has a 3-dB bandwidth at 5.5 GHz. The chip consumes 46 mW of DC power from a 1.2-V supply, and the total chip area, including the pads, is $0.3mm^2$.