Browse > Article
http://dx.doi.org/10.5573/JSTS.2008.8.4.283

Post-Linearization of Differential CMOS Low Noise Amplifier Using Cross-Coupled FETs  

Kim, Tae-Sung (RF Microelectronic Design Lab., Sungkyunkwan University)
Kim, Seong-Kyun (RF Microelectronic Design Lab., Sungkyunkwan University)
Park, Jin-Sung (Samsung Electronics)
Kim, Byung-Sung (RF Microelectronic Design Lab., Sungkyunkwan University)
Publication Information
JSTS:Journal of Semiconductor Technology and Science / v.8, no.4, 2008 , pp. 283-288 More about this Journal
Abstract
A post-linearization technique for the differrential CMOS LNA is presented. The proposed method uses an additional cross-coupled common-source FET pair to cancel out the third-order intermodulation ($IM_3$) current of the main differential amplifier. This technique is applied to enhance the linearity of CMOS LNA using $0.18-{\mu}m$ technology. The LNA achieved +10.2 dBm IIP3 with 13.7 dB gain and 1.68 dB NF at 2 GHz consuming 11.8 mA from a 1.8-V supply. It shows IIP3 improvement by 6.6 dB over the conventional cascode LNA without the linearizing circuit.
Keywords
Complementary metal oxide semiconductor (CMOS); intermodulation distortion (IMD); low noise amplifier (LNA); post-linearization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Lee, I. Nam, I. Kwon, J. Gil, K. Han, S. Park, and B.-I. Seo, "The impact of semiconductor technology scaling on CMOS RF and digital circuits for wireless application," IEEE Trans. Electron Devices, Vol. 52, No. 7, pp. 1415-1422, Jul. 2005   DOI   ScienceOn
2 T.-K. Nguyen, N.-J. Oh, C.-Y. Cha, Y.-H. Oh, G.-J. Ihm, and S.-G. Lee, "CMOS Low-Noise Amplifier Design Optimization Techniques," IEEE Trans. Microw. Theory Tech., Vol. 52, No 5, pp. 1433-1442, May. 2004   DOI   ScienceOn
3 T.-S. Kim, and B.-S. Kim, "Linearization of Differential CMOS Low Noise Amplifier Using Cross- Coupled Post Distortion Canceller," IEEE RFIC Symp. Dig., pp.83-86, Jun. 2008
4 V. Aparin, and L. E. Larson, "Modified derivative superposition method for linearizing FET low-noise amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 2, pp. 571-581, Feb. 2005   DOI   ScienceOn
5 N. Kim, V. Aparin, K. Barnett, and C. Persico, "A Cellular-Band CDMA 0.25-${\mu}m$ CMOS LNA Linearized Using Active Post-Distortion," IEEE J. Solid-State Circuits, Vol. 41, No. 7, pp. 1530-1534, Jul. 2006   DOI   ScienceOn
6 T.-S. Kim, and B.-S. Kim, "Post-Linearization of Cascode CMOS Low Noise Amplifier Using Folded PMOS IMD Sinker," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 4, pp. 182-184, Apr. 2006   DOI   ScienceOn
7 T.-W. Kim, B.-K. Kim, and K. Lee, "Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors," IEEE J. Solid-State Circuits, Vol. 39, No. 1, pp. 223-229, Jan. 2004   DOI   ScienceOn
8 T.-W. Kim, and B.-K. Kim, "A 13-dB IIP3 Improved Low-Power CMOS RF Programmable Gain Amplifier Using Differential Circuit Transconductance Linearization for Various Terrestrial Mobile D-TV Applications," IEEE J. Solid-State Circuits, Vol. 41, No. 4, pp. 945-953, Apr. 2006   DOI   ScienceOn
9 P. Andreani, and H. Sjoland, "Noise optimization of an inductively degenerated CMOS low noise amplifier," IEEE Trans. Circuits Syst., Vol. 48, No. 9, pp. 835-841, Sep. 2001   DOI   ScienceOn
10 V. Aparin, and C. Persico, "Effect of Out-of-Band Termination on Intermodulation Distortion in Common- Emitter Circuits," IEEE MTT-S Dig., Vol. 3, pp.977-980, Jun. 1999