• Title/Summary/Keyword: difference equations

Search Result 1,384, Processing Time 0.031 seconds

EXPONENTIAL STABILITY OF A CLASS OF NONLINEAR DIFFERENCE EQUATIONS IN BANACH SPACES

  • Nguyen, Sinh Bay;Le, Van Hien;Hieu, Trinh
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.851-864
    • /
    • 2017
  • The problems of global and local exponential stability analysis of a class of nonlinear non-autonomous difference equations in Banach spaces are studied in this paper. By a novel comparison technique, new explicit exponential stability conditions are derived. Numerical examples are given to illustrate the effectiveness of the obtained results.

REPRESENTATION OF SOLUTIONS OF A SYSTEM OF FIVE-ORDER NONLINEAR DIFFERENCE EQUATIONS

  • BERKAL, M.;BEREHAL, K.;REZAIKI, N.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.409-431
    • /
    • 2022
  • In this paper, we deal with the existence of solutions of the following system of nonlinear rational difference equations with order five $x_{n+1}=\frac{y_{n-3}x_{n-4}}{y_n(a+by_{n-3}x_{n-4})}$, $y_{n+1}=\frac{x_{n-3}y_{n-4}}{x_n(c+dx_{n-3}y_{n-4})}$, n = 0, 1, ⋯, where parameters a, b, c and d are not executed at the same time and initial conditions x-4, x-3, x-2, x-1, x0, y-4, y-3, y-2, y-1 and y0 are non zero real numbers.

OSCILLATION OF NONLINEAR SECOND ORDER NEUTRAL DELAY DYNAMIC EQUATIONS ON TIME SCALES

  • Agwo, Hassan A.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.299-312
    • /
    • 2008
  • In this paper, we establish some oscillation criteria for nonautonomous second order neutral delay dynamic equations $(x(t){\pm}r(t)x({\tau}(t)))^{{\Delta}{\Delta}}+H(t,\;x(h_1(t)),\;x^{\Delta}(h_2(t)))=0$ on a time scale ${\mathbb{T}}$. Oscillatory behavior of such equations is not studied before. This is a first paper concerning these equations. The results are not only can be applied on neutral differential equations when ${\mathbb{T}}={\mathbb{R}}$, neutral delay difference equations when ${\mathbb{T}}={\mathbb{N}}$ and for neutral delay q-difference equations when ${\mathbb{T}}=q^{\mathbb{N}}$ for q>1, but also improved most previous results. Finally, we give some examples to illustrate our main results. These examples arc [lot discussed before and there is no previous theorems determine the oscillatory behavior of such equations.

Oscillation of Linear Second Order Delay Dynamic Equations on Time Scales

  • Agwo, Hassan Ahmed
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.3
    • /
    • pp.425-438
    • /
    • 2007
  • In this paper, we establish some new oscillation criteria for a second-order delay dynamic equation $$u^{{\Delta}{\Delta}}(t)+p(t)u(\tau(t))=0$$ on a time scale $\mathbb{T}$. The results can be applied on differential equations when $\mathbb{T}=\mathbb{R}$, delay difference equations when $\mathbb{T}=\mathbb{N}$ and for delay $q$-difference equations when $\mathbb{T}=q^{\mathbb{N}}$ for q > 1.

  • PDF

AN ACCURATE AND EFFICIENT NUMERICAL METHOD FOR BLACK-SCHOLES EQUATIONS

  • Jeong, Da-Rae;Kim, Jun-Seok;Wee, In-Suk
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.617-628
    • /
    • 2009
  • We present an efficient and accurate finite-difference method for computing Black-Scholes partial differential equations with multiunderlying assets. We directly solve Black-Scholes equations without transformations of variables. We provide computational results showing the performance of the method for two underlying asset option pricing problems.

OSCILLATION OF SECOND ORDER NONLINEAR DELAY DIFFERENCE EQUATIONS

  • Saker, S.H.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.489-501
    • /
    • 2003
  • In this paper we shall consider the nonlinear delay difference equation $\Delta({p_n}{\Deltax_N})\;+\;q_nf(x_{n-\sigma})\;=\;0,\;n\;=\;0,\;1,\;2,\;...$ when (equation omitted). We will establish some sufficient conditions which guarantee that every solution is oscillatory or converges to zero.