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OSCILLATION OF NONLINEAR SECOND ORDER NEUTRAL
DELAY DYNAMIC EQUATIONS ON TIME SCALES

Hassan A. Agwo

ABSTRACT. In this paper, we establish some oscillation criteria for nonau-
tonomous second order neutral delay dynamic equations
(@(O) £ r(Dz(r()D® + H(t, 21 (1), 2% (ha(t))) = 0

on a time scale T. Oscillatory behavior of such equations is not studied
before. This is a first paper concerning these equations. The results
are not only can be applied on neutral differential equations when T =
R, neutral delay difference equations when T = N and for neutral delay
g—difference equations when T =¢~ for ¢ > 1, but alse improved most
previous resuits. Finally, we give some examples to illustrate our main
results. These examples are not discussed before and there is no previous
theorems determine the oscillatory behavior of such equations.

1. Introduction

In the recent years, the theory of time scales has received a lot of attention
which was introduced by Stefan Hilger in his Ph. D. thesis in 1988 in order to
unify continuous and discrete analysis (see [10]). In fact there has been much
activities concerning the oscillation and nonoscillation of solutions of dynamic
equations on time scales (or measure chains). We refer the reader to recent
papers [1-5, 8, 11, 13-15, 17} and the references cited therein. A book on the
subject of time scales, by Bohner and Peterson [7] summarizes and organizes
much of time scales calculus, see also the book by Bohner and Peterson [6] for
advances in dynamic equations on time scales.

In this paper, we are concerned with the oscillation of the second-order
nonlinear dynamic equations

(A) (@(t) + r(t)z(r()))>2 + H(t, z(h1 (1)), 22 (h2(t))) = 0
and
(B) (z(t) ~ r(D)z(r(1)))>* + H(t, (i (1)), 2° (ha(2))) = 0

on a time scale T. Since we are interested in asymptotic behavior of sclutions,
we will suppose that the time scale T under consideration is not bounded above,
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i.e., it is a time scale interval of the form [ty, 00)1 = [to, 00) N T. Through this
paper, we assume that:

(Hy) r € Crq(T,R"), nonincreasing, h and g € Crq(T, T), 7(t) < t,h1(t) <
t, ha(t) < 7(2), tli)ngor(t) = 00, )H{}ohl t) = m,tgrgohg(t) = o0 and
0 < r(t) <r <1, Cru(T,S) denotes the set of all functions f: T — S
which are right-dense continuous on T.

(Hy) H(t,u,v) € C(T x R*,R) for each t € T which are nondecreasing in u
and v and H(¢t,u,v) > 0 for uv > 0.

(Hs) [H(t,u,v)| > a(t)|u]* + B(t) [v]* where a(t),8(t) > 0 and 0 < A =
§ < 1 with p, q are odd integers.

By a solution of equation (A & B), we mean a nontrivial real valued function
z(t) which has the properties (z(t) + r(t)z(7(t)) € C%)[ts,0),t. > to and
satisfying equation (A & B) for all £ > ¢,. Our attention is restricted to those
solutions of equation (A & B) which exist on some half line [t,, 00} and satisfy
sup{|z(¢)] : t > t1} > 0 for any t; > ¢,.

A solution z(t) of (A & B) is said to be oscillatory if it is neither eventually
positive nor eventually negative. Otherwise it is called nonoscillatory. The
equation itself is called oscillatory if all its solutions are oscillatory.

Note that if T = R, we have o(t) = p(t) = t, f2(t) = f (t), and (A), (B)
become respectively as second-order neutral delay differential equations

(1.1) [2(t) + r(t)a(r(1)] + H(t,z(hi (1)), 2 (ha(t))) = 0
and
(1.2) [2(8) — r(®)2(r(t)] + H(t,x(ha (1)), ' (ha(t))) = O.

As a special case of equation (1.2), Wong in [16] considered the second order
sublinear neutral differential equation

(1.3) [2(t) —ra(t —7)] +a(®)f(z(t—0) =0, t>to,

where 0 < 7 < 1,a(t) € C ([0,),[0,0)), f € C((—o0,0),(—00,00)) satis-
fying z f(z) > 0 for z #0, f'(z) > 0 and that
¢ dx O da

N A TP R A 1

< oo, Ve>0

and

F(uv) > f(@)f(v), fuv >0 and o] > M
for some large M > 0. It was proved that equation (1.3) is oscillatory if and
only if

(1.4) /00 a(t) f(t)dt = oo.
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Recently, X. Lin [13] considered also a sublinear neutral differential equation
which is a special case of equation (1.2) in the form

(1.5) [2(t) = r(B)a(t —7)] +a()f(a(t—0) =0, t>to.

It was assumed that r(t),a(t) € C([0,0),[0,00)) and 0 < r(t) <r < 1, fis
nondecreasing, satisfying « f(z) > 0 for  # 0 and ¢ > 7. Then every solution
of equation (1.5) is oscillatory if

(1.6) /OO a(t)dt = oo.

Note that condition (1.6) can not be applied for the second order neutral
equation

(1.7) [2(t) — r(t)z(r(1))] + (7—7—;1)2‘”“ —h) =0,
where vy >0and 0 < A = 2—’ < 1 with p, ¢ are odd integers, for other results see
(9], [12].

IT=2%7 wehave o(t) =t+ 1, u(t) =1, f> = Af, and (A & B) become
the second-order neutral delay difference equations

(1.8) A% [o(t) £ r(O)a(r(t)] + H(t, a(hi (1)), Aa(ha(1))) = 0.

If T =hZ, h > 0, we have o(t) =t + h, p(t) = h, f* = Apf = LEAZN 5pg
(A & B) become the second-order neutral delay difference equations

(1.9) AR [y(8) £ r(t)z(r(t)] + H(t, x(hi (1)), Az (ha(t))) = 0.
If T=¢N = {t : t = ¢", n € N, ¢ > 1}, we have o(t) = qt, p(t) = (¢ — 1)t,
mff(t) = ﬂ%)?—i%@» and (A & B) become the second order g—neutral delay

difference equation
(1.10) A [y(t) £ r(O)z(T(®)] + H(t, z(h (2)), 25 (ha(1))) = 0.

The paper is organized as follows: In Section 2 we present some preliminaries
on time scales. In Section 3, we establish some new sufficient conditions for
oscillation of (A & B). In Section 4, we present some illustrative examples to
show that our results not only new but also improved most previous results.

2. Some preliminaries on time scales

A time scale T is an arbitrary nonempty closed subset of the real numbers
R. On any time scale T, we defined the forward and backward jump operators
by
(2.1) o(t) :=inf{s € T:s >t} and p(t) :=sup{s € T:s < t}.

A point ¢ € T, ¢t > inf T is said to be left-dense if p(t) = t, right-dense if
t > supT and o(t) = ¢, left-scattered if p(t) < ¢ and right-scattered if o(t) >
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t. The graininess function p : T = [0, 00) is defined by p(t) := o(t) — t. For the
function f: T - R the (delta) derivative is defined by

flo(®) - f(#)

(22) UL

f is said to be differentiable if its derivative exists. A useful formula is

(2.3) f7 = fa(t) = f(0) + p) F2 ().
If f,g are differentiable, then fg and the quotient L (where gg° # 0) are

differentiable with !
(2.4) (f9)® = 29+ f79° = fg® + [2¢°,
and
(2.5) (i)A = M‘

g 99°

If f2(t) >0, then f is nondecreasing.

A function f : [a,b] — R is said to be right-dense continuous if it right
continuous at each right-dense point and there exists a finite left limit at all left-
dense points. A function f: T - R is called regressive, if 1 + pu(t) f(¢) # 0 for
all t € T. The set of all functions f : T — R which are regressive and
rd-continuous will be denoted by C,. We define the set R* of all positively
regressive elements of R by Rt = {f € R : 14+pu(t) f(t) # 0, t € T}. A function
F with F® = f is called an antiderivative of f and then we define

b
(2.6) / (At = F) - F(a),

where a, b € T. It is well known that rd-continuous functions possess antideriva-
tives. A simple consequence of formula (2.3) is

o(t)

(2.7) t f(s)As = p(t)f (1),
and infinite integrals are defined as

o] b
(2.8) / IO bl.i_)m / FO) At

3. Main results

In this section, we establish some sufficient conditions for the oscillation of
equations (A & B). For the remainder of the paper we assume that §71(#) is
the inverse of the function &(¢) exists and satisfies 6~ (") (¢) = t + nd.
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I. Oscillatory behavior of solutions of equation (A)

Theorem 3.1. Assume that Hy — H3 hold. Then every solution of equation
(A) oscillates, if

(3.1) too{a(s)(k[l — r(ha(s))]ha(8))* + %ﬂ(s)}As = occ.

Proof. Suppose to the contrary that equation (A) has a nonoscillatory solution
z(t). We may assume that there exists t; > tp such that z(¢) > 0, z(r(¢)) > 0
and z(4(t)) > 0 where 6 = min{hy, hy} for all t > ¢;.

Set

(3.2) y(t) = z(t) + r(t)z(r(t)).
Then, equation {(A) takes the form
y228(8) + H(t, z(ha (1)), 2 (ha(t))) = 0.

and y(t) > 0. Hence, from equation (3.2) it follows that y(t) > z(¢) forall ¢ > ;.
Assume that z2(8(t)) < 0 for all £ > ¢;.Then (H;) implies that y®% > 0 and
then either y® < 0 or y® > 0. If y® < 0 then y — —oo which contradicts
y > 0. Also, from nonincreasing of r(¢) and #2(t) < 0 implies that y® < 0,
which contradicts y© > 0. Now, it follows that z®(¢) > 0 and then from (Hy)
implies that, y©2 < 0 for all t > t;. Thus y?(t) is strictly decreasing. We
prove that y2(¢) > 0 on the interval [t;, 0o)7. Assume not. Then there exists
ty > t; such that y2(t;) = C < 0. Then, since y®2(t) < 0, we have

(3.3) y2(1) <yt(t) =C,  for t 2>ty
and therefore
(3.4) y2(t) < C for all t>t,.

Integrating inequality (3.4) from ¢» to t, we obtain

t
(3.5) u(t) = y(t2) + / YA (8)As < ylts) + C(t ~ 1),

ta
and consequently y(t) — —oo as t — oc which contradicts y > 0. Hence
y»(t) > 0 and consequently, y(t) is strictly increasing, then from (3.2) we
have, y(t) — r(t)y(r(t)) = x(t) — r@)r(r®))z(T(7(t))) < z(t), therefore

(3.6) z(t) > (1-r(t)y(t).
Since 22 (t) < 0 and y(t) > 0, then

y(t) = y(ts) +/t y©(s) s
(3.7) > (t - ta)y™ (t)

> kty®(t) for t > =1t,0< k< 1.

ty
=)
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Since r(t) is nonincreasing, x > 0 and z® > 0, it follows that
g )

y2 (@) < %) +r{o(t)(z(r(t))”
< 22t + (x(r(@®)
and then,
224 (1) it z2(t) > (z(r(1))2
(3.8) v () <{ 2(z(r()) if z2(2) < (a(r(2))”

If z2(t) > (z(r(t)))*, then z2(t) > $y~(¢) which implies that

P2 (r(8)) > 5u°((0) > 59°(0)

On the other side, if z2(t) < (z(7(t)))2, then z2(r(t)) > Sy~ (t). Thus, we
have

(3.9 LL'A(’T(t)) > §yA(t).

Since 7(h(t)) < h(t) < t and from nonincreasing of y*(t), we get
(3.10) y2(r(h(®)) > 92 (h(t) 2y ().

Since z > 0,2 > 0 and H(t,u,v) nondecreasing in u,v, then, by using
(Hy),(Hs), (3.6), (3.7) and (3.9), we get

0 = P80 + Hit,a(m(0),25 (ha(0)

> yP) + B[ rlha ()l (1), 5% (7 (al9)
y4(0) + H (e, KL= 70 ()]s (9 (a0, 592 0)
v (0) + o) (KL~ r(h ()] (0 (0)* + B0 G2 (1))

y24(0) + )KL~ () () + 55 B0l D)

AV ¥4

v

Hence,

y24 () 1
—W > at)(k[1 = r(hy ()] (1)) + Z—A,B(t).

Integrating the above inequality from ¢ to oo, we get

[ fals) kL= (oM (61 + 8o} s
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il
!
5

which contradicts (3.1), and consequently, equation (A) has no eventually posi-
tive solution. Similarly, by using the same technique we can prove that equation
(A) has no eventually negative solution. Thus equation (A) is oscillatory. The
proof is complete. O

I1. Oscillatory behavior of solutions of equation (B)

Theorem 3.2. Assume that Hy — Hs hold with 0 <r(t) =r < 1. Then every
solution of equation (B) oscillates, if

(3.11) (k) a(s)(r(hs () + 7 B()} As = oo,

ts
Proof. Suppose to the contrary that equation (B) has a nonoscillatory solution
z(t). We may assume that there exists t; > to such that z(t) > 0, z(r(¢)) > 0
and z(6(t)) > 0 where & = min{hq, ho} for all t > t;. Set

(3.12) z(t) = z(t) — ra(r(t)).
Then, equation (B) takes the form
(3.13) 228 + H(t,z(hi (1), £ (h2(t))) = 0,

and from (3.12), we get 2(t) < z(t). Assume that 22 (8(t)) < 0 for all t > ¢,.
Then z(t) is nonincreasing and consequently (Hs) implies that,
H(t,z(h1(t)), 2% (ha(1))) < O.

Thus from (3.13) it follows that 224 > 0 and then 2% is strictly increasing.
So, we may have either 2% < 0 or 22 > 0. Assume that 22 < 0 then from
(3.12) we have z2(t) < r(z( 7(t)))® and consequently,

z2(t) <r(e(r(t)® <r*(@( (1)) < - <rF(a(rtE)® = r*z® (t)

for sufficiently large k such that to = 7%(t). Hence, z(t) < x(to) +r*z® (to)(t -
to) which implies that z(t) < 0 which contradicts z(t) > 0. So z© < 0 is
impossible and then 22 > 0.

Also, since z > 0 and 22 < 0, then 0 < tliglc.z'(t) = p < o0 and consequently,

from (3.12) it follows that tgm z(t) = (1 = r)p < oo. But, since 224 > 0 then

z2(t) is an increasing. So, 0 < 2z(t1) < z(t) for all ¢ > ¢;. Then z(t) = z(t;) +
fttl 22(8)As > z(t;) + 22 (t,)(t — 1) and therefore z(t) — oo as ¢ — oo which
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is a contradiction. This shows that & < 0 is impossible, and consequently
2 > 0.

Now z > 0,22 > 0. Then (H,) implies that H(t,z(hi(t)), 2% (ha(t))) > 0
and then 224 < 0. Thus z2(t) is strictly decreasing. We prove that z2(¢) > 0
on the interval [t3, oo)r. Assume not. Then there exists t4 > t3 such that
z2(t4) = C < 0. Then, since z22(t) < 0, we have

(3.14) 22(t) <22(ty) =C  for t>ty,
and therefore
(3.15) z2() < C  forall t>ty.
Integrating the last inequality from ¢» to ¢, we obtain
t
(3.16) 2(t) = 2(ts) +/ A(s)As < 2(t0) + Clt - ta),
tg

and consequently z(t) = —oo as t — oo which implies that there exists ¢ > 0
and ts > t4 such that z(t) < —c for ¢ > t5. Then, we have from (3.2) that

(3.17) z(t) < —c+rz(r(t)) for t>ts,
which implies that (67 (¢5)) < —c + raz(t5). Thus

(3.18) (0D () < —e > v+ Ha(ts) < —e+ " a(ts),
i=0

and so z(6~ (™1 (¢5)) < 0 for large n, which contradicts the fact that z(t) > 0
for all ¢+ > t;. Hence 22(t) > 0 and this implies that z(t) is strictly increasing
on {t1,00). We prove now that z(t) > 0 for ¢t > ¢ where ¢, is large enough.
Suppose not. Then there exists a t3 > ¢; with z(t3) < 0. Now, since z(t) is
strictly increasing then z(t) > 0 for ¢t > ¢3 (for if there exists a t4 > t3 with
z(tg) > 0, then z(t) > 0 for ¢t > t4, but we are assuming that z(¢) > 0 for ¢
large enough is not true). Then from (3.2) that z(¢) < rz(7(t)), for t > t3.
Thus z(71(¢)) < rz(t) and this implies after iteration that z(6~("+1(t)) <
rHg(t) — 0 for large n, since 0 < 7 < 1 and so z(6~ (" (t)) < 0 again,
which contradicts the fact that z(¢) > 0 for all ¢ > ¢;. Then, we have

(3.19) 2(t) >0, 22(t) >0, 282(t) <0 for t>t;.
Since 222(t) < 0 and 2(t) > 0, then

z(t) = 2z(t4) +/ 22 (s)Os

tg

(3.20) > (t - t4)2°(2)

> ktz2(t) fort > =15,0<k < 1.

t4
(1—-k)
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Since 22(t) > 0,22(t) > 0,0 < r < 1, and z(t) > z(t) > ktz®(t) then we have
28(t) = 28(t) — r(z(r(1))
z(t) = 28(t) + r(z(r(t))

Now z(t) > 0 implies that z(t) > rz(r(t)). Since z(t) < z(1),0 < z2(¢t) is
nonincreasing and H (¢, u,v) nondecreasing in u and v. Then, using (3.20) and
(3.21) we get

(3.21) )A .

0 = 28%(t) + Ht,z(hi (1), 22 (ha (1))

> 2881 + H(t,ra(r(hi (1)), ra® (r(ha (1))

> Z88(t) + H(t,rz(r(h (1), 722 (7(ha(t)))))

> 2881 + a®)rz(r(h () + B(t)(rz® (r(ha ()

> 2880) + a@)(krr(hy 1)z (r(ha (8))))

+rB(8) (22 (1)

> 288(0) + (k) a(t)(r (b (t)™ + r B(1)) (22 (1))

Then
A A LA 288(1)

(3.22) ((kr)a(®)(r(h1 ()" + 17 8(1)) < “ A

Integrating inequality (3.22) from ¢; to oo, we get

/{kr (r(ha () + 7 B(s)} s

= 2B8(5)
< - — s
- </t5 (22(s))*
:A(t) As
—lim —

too Joap,)

4]

As

= —/ ‘—)\<OOO<)\<1
y&(ts) 8

Hence,

/ (kP als)(r(ha () + rB(s)} s < oo,

which contradicts (3.11). So, equation (B) has no eventually positive solution.
Similarly, by using the same procedure we can prove that equation (B) has no
eventually negative solution. Thus equation (B) is oscillatory. [

From Theorems (3.1) and (3.2), we have the following results:

Theorem 3.3. Assume that H; — Hs hold. If

(3.23) /too a(s)(k[1 — (ki (s))]h1 (s))* As = o0.
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Then every solution of the equation
(3.24) (x(t) + r()z(T(t)2 + H(t, z(hi(2)) =0
oscillates.

Theorem 3.4. Assume that Hy — Hs hold with 0 < r(t) =r < 1. Then every
solution of the equation

(3.25) (x(t) — r()z(r(£)>> + H(t,2(m (1)) =0
oscillates, if
(3.26) /t a(s)(t(h1(s))* Drs = 0.

Theorem 3.5. Assume that Hy — Hy hold. Then every solution of (A) oscil-
lates, if the inequality

1
(3.27) 22(t) + [a(t)(k[1 = r(h ()1 (1)) + 2—/\lf(t)]zx(f(t)) <0,0<k <1
has no eventually positive solution.
Theorem 3.6. Assume that Hy — Hs hold. Then every solution of (B) oscil-
lates, if the inequality
(3.28) 220 + [(kr) o) (T(ha () + P B2 (7(1) <0,0< k < 1
has no eventually positive solution.

Theorems 3.5 and 3.6 reduce the question of oscillation of equation (A)
and (B) to that of the absence of eventually positive solutions of the dynamic
inequality (3.27) and (3.28) respectively.

The following result concerning with oscillation of second-order nonlinear

delay dynamic equations on time scales. In [17], it was proved the equivalence
of the oscillation of nonlinear dynamic equations

(3.29) 22 (t) +a(t) flz(t—1) =0

and

(3.30) B2 (t) + a(t)(foz”) = 0.

It was proved ([17], Corollary 2.2) that equation (3.29) is oscillatory if
(3.31) / a(s) s = oo,

which is the same result obtained by M. Bohner et. al. (see [5], Theorem 3.2).
Also, E. Akin et. al. [4] considered the equation

(3.32) 28 (t) + a(t)(z°)* = 0,

and proved that, if (3.31) satisfied then equation (3.32) is oscillatory. This is
equivalent to oscillation of

(3.33) 2 (t) +a(t)z*(t —7) = 0.
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Note that condition (3.31) can not be applied for the second order neutral
equation

(3.34) 228 (1) + G _Vh)z 2t —h) =0,

where y >0and 0 < A = f)—’ < 1 with p, ¢ are odd integers.

Theorem 3.7. Assume thot Hy — Hy hold with r(t) =0 and 5(t) = 0. If

(3.35) / a(s)(h1(s))*As = 00
ts

Then every solution of the equation

(3.36) 22 (t) + a(t)a? (hi(t) =0

oscillates.

4. Examples

In this section, we give some examples to illustrate our main results. In
fact, Example 4.1 and Example 4.2 are not discussed before and there is no
previous theorems determine the oscillatory behavior of such equations. But
Example 4.3 shows that our results improve some previous results.

Example 4.1. Consider the following second order neutral delay dynamic

equation
(4.1)

(z(t) + e 3¢ gt — 7)28 + %(lm(t —h)| + e_tl

-z (- ha)])

X (sgn 2(t — hy))(sgn 22 (t — hy)) =0,

) = b halt) = £~ s Ba(t) = £ — o Hita (1), 22 (hat)
(Ja(t — ) + [e2(t = ha)[") (sgn o(t — hn)) (sgm (¢ - hg)) (i, a(t) =
and 8 =1+ e *). Then we have

[ = s ) + g8} s

001 x>
= 1&/ Sf-e x(omr=h)j(g = py) As+2iA (1+e%)hs
s

o> _ 1 oo
1&/ (Gl Yy N I
ts

s 22

\v}

Therefore, by Theorem (3.1), equation (4.1) is oscillatory.
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Example 4.2. Consider the following second order neutral delay dynamic
equation

(a(t) ~ a(nt)>® + o) + B2 ooy

X (sgn z(12t)) (sgn = (73t)) =0,

(2 + sint)
4.2)

where ¢ > 1,0< A = s <1, p, q are odd integers, oy, s € [A, A +1) and v,
v2, 73 € (0,1). In equation (B) r(t) = %, 7(t) = m1t, hi(t) = yat, ha(t) = ¥ot,
H(tax(hl (t))’

22 (haft) = {ZTID o ¢ BE D oo Py
 (sn o(nt))(sn 2 (351)).
(ie., a(t) = @—"'t'—as—‘l"—tl and 8 = ﬁ%) Then, we have
T o) (5)) + 7 B(s)} s
= @ [ qigynerr [T B A

v

(kr) /{—— T1Y25) }As—l—r/ %As
ts
(ki’}’l’)’g))\ * As 1,\/ As
¢

+(=)

c e Y p =o0 for aj,az € [A,A+1).

§%2
Hence, by Theorem (3.2) every solution of equation (4.2) oscillates.

Example 4.3. Consider the following specific second order neutral delay dy-
namic equation

(4.3) (2(t) - %x(t )+ g _7h)2xA(t _R)=0t€T,

where T is a time scale, and
T, h>0,r(t) = —;-,T(t) =t—1,h(t) =t —h,H(,z(h1(t),z' (h2(t)) = z(h(2))

(ie., at) = ﬁ, v > 0 and 8(t) = 0). Then X. Lin’s result [13] fail to
determine oscillatory behavior of this equation, since

/oo a(t)dt < oo
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But, according to Theorem 3.3 when T = R we have

/oc a(s)(T(hy(s)) ds

ts

* (s—1~h)
/ta 2-hp

1/ ! (1- T Yds = oo.
ts

2 s—h s—h
Hence, every solution of equation (4.3) is oscillatory.
Example 4.4. Consider the following specific sublinear second order delay
dynamic equation
1 1
(4.4) P8 (t) + mx (hi(t)) =0.
Here a(t) = —L—. Then ( [4], Corollary 5.3), ([5], Theorem 3.2) and ([17],

Corollary 2.2) results fail to determine oscillatory behavior of this equation,
since

/oo a(t)dt < oo.

/oo a(s)(hi(s))*As = /toc Ls = 00.

ts 5 8
Hence, by Theorem 3.7, equation (4.4) is oscillatory.

But
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