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OSCILLATION OF SECOND ORDER
NONLINEAR DELAY DIFFERENCE EQUATIONS

S. H. SAKER

ABSTRACT. In this paper we shall consider the nonlinear delay dif-
ference equation

APrAzy) + gnf(Tn-0) =0, n=20,1,2,...

when Y ﬁ < 00. We will establish some sufficient conditions
n=ng

which guarantee that every solution is oscillatory or converges to
Z€ero.

1. Introduction

Recently, there has been an increasing interest in the study of oscil-
lation and asymptotic behavior of solutions of second order difference
equations, see, e.g., [1]-[16], [18]-[25]. Following this trend, in this paper
we shall consider the nonlinear delay difference equation

(1.1) A(ppAzy) + gnf(tpn—0s) =0, n=0,1,2,...,

where A denotes the forward difference operator Az, = 41 — x, for
any sequence {z,} of real numbers, o is nonnegative integer, {p,}5,
and {gn}>2 , are sequences of real numbers such that p, > 0, g, > 0 and
{gn} has a positive subsequence, and f is a continuous, nondecreasing
real valued function which satisfies

(1.2) uf(u) >0 for uw#0 and f(u)/u>~>0.

By a solution of (1.1) we mean a nontrivial sequence {z,} which is
defined for n > —o and satisfies equation (1.1) forn = 0,1,2.... Clearly
if

(1.3) Tp=A, for n=-0,...,-1,0,

Received April 1, 2002.
2000 Mathematics Subject Classification: 39A10.
Key words and phrases: oscillation, nonlinear delay difference equations.



490 S. H. Saker

are given, then equation (1.1) has a unique solution satisfying the initial
conditions (1.3). A solution {z,} of (1.1) is said to be oscillatory if for
every n1 > 0 there exists an n > n; such that z,z,+1 <0, otherwise it is
nonoscillatory. Equation (1.1) is said to be oscillatory if all its solutions
are oscillatory.

In most of the above mentioned papers, the authors considered the
linear or nonlinear difference equations and gave some sufficient condi-
tions for oscillation when p, > 0, and

(1.4) > 1o

n=0 Pn

In [21], Zhang, considered the equation

(1.5) A(pnAzn) + gnzl =0, n=0,1,2,...,
when

o 1
(1.6) Z — < 00,

no Pn

and proved the following: Every solution of superlinear equation (1.5)
oscillates if and only if

> oo
1

(1'7) Z qn (pn+1)7 = 00, where p, = E :_" v > 1,
nEno i=n "

and every solution of sublinear equation (1.5) oscillates if and only if

o0 oo
1
(1.8) E @n (Pny1) = © where p, = E 17) 0<y<l
‘ i
n=ng i=n

In [4], Arul and Thandapani considered the equation
(1.9 Alpnd(Azy)) + f(n,2p+1) =0, n=0,1,2,...,

when (1.6) holds and gave some sufficient conditions for the existence of
positive solutions.

In this paper we intend to use the Riccati transformation technique
for obtaining several new sufficient conditions which guarantee that ev-
ery solution of equation (1.1) oscillates or converges to zero when (1.6)
holds. Our results in this paper are different from those in [1]-[16], [18],
[22]-[25].
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2. Main results

THEOREM 2.1. Assume that (1.2) and (1.6) hold. Furthermore, we
assume that there exists a positive sequence {0,}52, such that

(1) ABn <0, ApnAB) 20, 3> fos1an = 00

n=ng
00 1 n—1
and ). B > Biv1q; = 0o, for some ng > 0, and
n=ng i=ng

n+o [es) n+o ﬁ;
(h2) > Qi>0and ), Qn{(Z Qi) (0+1)—a}——-oo,

i=n+1 n=ngp i=n—+1
where
n—ao
Qn = 15— qn.
" 72(pn—~a) "

Then every solution of equation (1.1) oscillates or converges to zero.

Proof. Suppose to the contrary that {z,} is an eventually positive
solution of (1.1) such that z, > 0 and z,_, > 0 for all n > nyg. We
shall consider only this case, since the substitution y, = —z, trans-
forms equation (1.1) into an equation of the same form subject to the
assumptions of Theorem. From equation (1.1) we have

(21) A(pnAwn) = “an(mn——o) <0, n = nop,

and so {p,Az,} is an eventually nonincreasing sequence. Since {g,,} has
a positive subsequence, the nondecreasing sequence {p,(Az,)} is either
eventually positive or eventually negative and then from (2.1) there exist
two possible cases of Azx,,.

Case (I). Suppose that Az, < 0 for n > n1 > ng. It follows that
limp 00 T, = b > 0. We assert that b=0. If not, then f(zn—») — f(b) >
0 as n — oo. Since f(z) in nondecreasing there exists ny > nq such that
f(Zn—o) > f(b) for n > ngy. Therefore from (2.1) we have

A(pnAmn) < —an(b)'

Define the sequence u, = B, (prnAzy) for n > ny. Then we have

(2'2) Au, < —f(b)ﬁn—HQn + Aﬂn(pnAl'n)-

Summing (2.2) from ns to n — 1, we have

n—1 n—1
(2'3) Up < Upy — f(b) Z /Bs+1‘IS + Z (psAﬂs)A‘Tm

S=n2 8§=nNg
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and then
n—1 n—1
tn <ty — F(5) D Bos18s + psDBAT_, — Y ADsABS)Zss1.
§=no s=no

In view of (k1) we have

n—1
un <M — f(b) Y Beyags,

§=n2g

[e¢]
where M = up, —pp, ABn, Azyn,. In view of (h1), since Y Bpi1¢n= 0o it
n=ng
is possible to choose integer n3 sufficiently large such that for all n > ns

b n—1
Up < _f’(Q_) Z ﬂs—}—le-

n=ng
Summing the last inequality from n3 to n we obtain
—1
f b) n 1 S
Tngl S Tny — 1) > > Bina
2 PsPs

s=ns i=nsg

Condition (h;) implies that {z,} is eventually negative, which is a con-
tradiction. Thus {z,} converges to zero.
Case (II). Suppose that Az, > 0 for n > n;. Then from equation

(1.1) we have A%z, < 0 for n > n;, and then {Az,} is nonincreasing
n—1

sequence, and =, — T, = Y. Azy > (n — ny)Az, which implies that
k:=n1

Tn > 5 Az, for n > ng > 2ny + 1. Then

n—o

(2.4) Tn—g > ALp—s, N>n3=n9+0.

From equation (1.1) and (1.2) we have
(2.5) APaAzn) + YnTn-o < 0.
Then by using (2.4) in (2.5) we have

n —
(2-6) A(pnAxn) + van ‘

Azp—s £0, n2>ns,

Setting ¥, = pnAxy,, yn > 0 and satisfies
(27) Ay'n, + Qnyn—a' <0, n>ns,
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where Q, = ’yqnz(;;—;j’;—). Let

A
(2.8) Ay = — I,
Yn
Since {yn} is a nonincreasing sequence, then we have 0< ), < 1 for
n—1
large n. From (2.8) we have #2+ =1 ), and =2 = T (1- )"
i=n-~og

Then by (2.7) and (2.8) and employing the arithmetic mean-geometric
inequality, we have

(2.9) /\>QnH(1— >Qn<1——z,\> .

i=n—o

n+o

Let b, = ). Q. Then (2.9) can be rewritten as
i=n+1
(2.10) An >Qn<1——b Z)\) .
a n 1=n—ao

Then from (2.10) by using the inequality

1 1-° [To-lﬁ(a—l-l) —0] o
(2.11) [1——7*3:} > x4+ for r >0and z < —,

o T r
we have

1 A 1
. S 1 1 L

(2.12) X > Qu [bn i:zn;/\z i ((b Yo (o + 1) — )} .

It follows that

n—1 n+o ai—l
)‘nbn—Qn Z AzZQn (Z Q'L> (0+1)‘0

i=n—o i=n+1

Then, for N > ng,
(2.13)

N N n—1 N n+o o'+1
Do M= D Qn Y A2 Z%((Z Qz> (o+1)a).

n=ns n=ns i=n—o n=ns t=n+1
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Interchanging the bounds of summation, we find

N n—1 N—o—1 ita
O
- Z Ai Z Qn = Z An Z Q;.
1=ng n=i+1 n=ns i=nt+1

Combining (2.13) and (2.14), it follows that

N n+o N n+o ;qlﬁ
e1H) > w3 ex3 e ( 5 Qi) o410
n=N-—o i=n+1 n=ng i=n+1
Summing (2.7) from n + 1 to n + o, we get
n+o
Ynt+l4o — Ynt1 + Z Qiyi—o < 0.
i=n+1

Using the fact that {y,} is a positive nonincreasing function, we have

n+o
Yn+1 > Yn Z Q’ia
t=n+1
and so
n+o
(2.16) Yo o<,
i=n+1
eventually. Then, from (2.15) and (2.16) we have
(2.17)
N N nto 31
Z )\nZZQn (Z Qi> (c+1)—0c | - o0asN — oo,
n=N-—¢g n=ng i=n+1
by (hg). But, from the definition of A, we have
(2.18) An = (1 - y"“) .
Yn
Hence,
3 Y Yn+1
2.19 Ap = (1— L )<a+1.

and this contradicts (2.17). Then every solution of (1.1) oscillates. The
proof is complete. O
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Note that Theorem 2.1 can not be applied to equation (1.1) when
o = 0. Then the retarded arguments ¢ appearing in the nonlinear
term plays an important role in the generating qualitative behavior for
equation (1.1) different from that for the corresponding equations with
o = 0. It is of interest to find some new oscillation criteria different from
the results in Theorem 2.1.

THEOREM 2.2. Assume that (1.2) and (1.6) hold. Furthermore, we
assume that there exist positive sequences {8,}52, and {pn}5>, such
that (hy) holds, and

$ Pi—o(Apy)?
(220) lim_sup > [vpzqz T, |=®

l=ng

Then every solution of equation (1.1) oscillates or converges to zero.

Proof. We proceed as in Theorem 2.1. We may assume that equation
(1.1) has a positive solution {z,} such that z, > 0 and z,—, > 0 for
all n > ng. Then we have {Az,} is of one sign. If {Az,} is eventually
negative, then we may follow the proof of Theorem 2.1 to show that
{zn} converges to zero. Next we consider the second case when {Az,}
is positive for all n > n; > ng. From (1.2) and (1.1) we have

(2'21) A(pnA-Tn) + YGnTn—o < 0.

Define the sequence {w,} by

(2.22) wy = p P2
Tn—c

Then w, > 0 and

(2.23) AWy = Prs1A2np1A [ Pn ] +2 ip Zn),
n—-—a n—o

From (2.21) we have A(p,Az,) < 0, and since Az, > 0, then we con-
clude that

(224) Pr—ocQDTp—g = pn+1A:L"n,+1; and Tptl-o 2 Tn—o-
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From (2.21)-(2.24), we have
(2.25)
App Pn

Aw, < — YPnqn + Wn41 — ———Qwr21+1
n+1 Pn—o (pn+1)
2
— o NDngn + pn—a(Apn)2 |V pn/pn—aw o &
- nn
4pp, P+l " 2v/ pn/Pn—c
< —_ |:r)/pnqn — M] .
4pn
Then, we have
(2.26) Aw, < - [wnqn - M] |
4pn

Summing (2.26) from n; to n, we obtain

pZ—a(Apz)Z]

n
(2.27) ~Wn, < W41 = Wy < — [vpqu s

l=n;

which yields

n

2
(2.28) > [vpzqz - I”_”T(SML] <a,

l=ny
for all large n, which is contrary to (2.20). The proof is complete. O

From Theorem 2.2, we can obtain different conditions for oscillation
of all solutions of equation (1.1) by different choices of {p,}. Let p, = n?,
n > ng and A > 1 is a constant. By theorem 2.2 we have the following

result.

COROLLARY 2.1. Assume that all the assumptions of Theorem 2.2
hold, except the condition (2.20) is replaced by

n A )2
. A _ps—a((5+1) —5)°] _
(2.29) JLrgosup gn [75 s 1o = 00.
s=ngp

Then, every solution of equation (1.1) oscillates or converges to zero.
The following example is illustrative

ExaMmpLE 2.1. Consider the difference equation

(2.30) A(n®Azy) + pz, =0, n>1
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where y > %. Then, p, = n?, v = 1. If we take A = 1, then we have

n

3" [, - Pt PR, )

s=ng s=1

n
_ Z(;“N—_l)sﬁ .
s=1 4

as n — oo. By Corollary 2.1, every solution of (2.30) oscillates or con-
verges to zero. Note that none of the above mentioned papers can be
applied to (2.30). Hence, Theorem 2.2 and Corollary 2.1 are sharp.

As a variant of the Riccati transformation technique used above, we
will derive a Kamenev type oscillation criteria which can be considered
as a discrete analogy of Philos’s condition for oscillation of second order
differential equations [17].

THEOREM 2.3. Assume that (1.2) and (1.5) hold, and let {,}52,
and {p,}5°, be two positive sequences such that (h1) holds. Further-
more, we assume that there exists a double sequence {Hp, , : m > n > 0}
such that (i) Hym = 0 for m > 0, (ii) Hpp > 0 for m > n > 0, (iii)
A21‘_Im,n = ddmn+l — Hm,n- If

(2.31)
m—1 9 2
. p A
n%l—l}éo sup E I:’)’Hm,npn(}n - nj—l <hm,n - Pn Hm,n) jl = 09,
m’O n=ng 4 pn pn+1
where
A2]_Im,n

hm,n = - \/ﬁm—,n’ ;nz pn/pn—a-

Then every solution of equation (1.1) oscillates or converges to zero.

Proof. We proceed as in the proof of Theorem 2.1. We may assume
that (1.1) has a nonoscillatory solution {z,} - ,. Then we have {Az,}
is of one sign. If {Axz,} is eventually negative, then we may follow the
proof of Theorem 2.1 to show that {z,} converges to zero. Next we
consider the case when Az, > 0 for n > nj. Define {w,} by (2.22)
as before. Then we have w, > 0 and (2.25) holds. For the sake of
convenience, let us set

ﬁn = pn/pn—a-
Then,
Apn /—)n 2

Wn+1 — Wnt1-
Pn+1 (pn+l)2 "

YPnln < —Awy, +
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Therefore, we have

(2.32)
m—1
Z YH 0 Pnqn
n=—ni
A m—1 E
Z Hm nA'wn + Z Hmn wn+1 Z Hm,n—n2w2+1
n=ni n=ni n=ni (pn+1)
which yields, after summing by parts
m~—1
> YHmnbnn
n=ni
m—1 Ap
< Hp ;1 Wny + Z wn+1A2Hmn + Z Hmn nwn+1
n=n, n=n Prt1
m—1 -
P
- Z Hm,n—n2w2+1
n=nj (pn+1)
= mnlwnl - Z hmn\/ m,nWn+1 + Z Hmn wn-l-l
n=nj n=n Pr+

pn
- E Hy, n )zwn+1 Hpnywn,

n=ni Pn+1
m—1 -
Hm,n Pn
- E Wn+1
n=ny Prt1

= (Pns1)” Ap 2
Z |:7Hm,nann - Z; <hm,n - = vV Hm,n) < Hm,n1wn1
n

Pn+1
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which implies that

= (pns1)’ Ap 2
Z YHmnprdn — ”‘ﬁji_““ (hm,n - = Y Hm,n)
ny1—1
< Hnmo (wm + Y wnqn> :
n=0
Hence
m—1 2 2
. 1 (pn+1) App
lim sup YHmnpngn — ——— | Apn — VHun
m—oo Hm,0 fV___‘% |: p 4 /_)n Pr+1
n1—1
< (wm + Z ’an‘]n) < 00,
n=0
which is contrary to (2.31). The proof is complete. a

By choosing the sequence {Hp,} in appropriate manners, we can
derive several oscillation criteria for (1.1). For instance, let us consider
the double sequence {H, ,} defined by

Hppn=(m-n)*, A>1,m>n>0,
A
(2.33) Hypp = (1og mt)" N> 1,m>n >0,

Hpyp=(m-— n)()‘) A>2, m>n>0,
where (m —n)* = (m —n)(m —n+1)---(m —n+ X — 1), and
Ag(m —n)N = (m—n - 1)N — (m —n)X = —\(m —n) A,

Then Hpym = 0 for m > 0 and Hp > 0 and AgHp,p < 0 for m >
n >> 0. Hence we have the following results.

COROLLARY 2.2. Assume that all the assumptions of Theorem 2.3
hold, except the condition (2.31) is replaced by

1 m
IR S| Er—
(2.34) =0 ,
pn—apn+1 ()\ A=2 Apn /\) :|
- TnT m—-—n) 2 — m-—n = 00.
4pn ( ) Pn+1 ( )

Then every solution of equation (1.1) oscillates or converges to zero.
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COROLLARY 2.3. Assume that all the assumptions of Theorem 2.3
hold, except the condition (2.31) is replaced by

(2.35)
1 sy m+1\*
li —_— 1
miveo > P (log(m + 1))* nZ:o 7 < 1 ) Prin

2

A-2
_ pn—op72H_1 A lo m-+1 T_ Apn (lO m+1 A
4pn ntl\ Entl Pr+1 St

= 00.
Then, every solution of equation (1.1) oscillates or converges to zero.

COROLLARY 2.4. Assume that all the assumptions of Theorem 2.3
hold, except the condition (2.31) is replaced by

1 m—1
Jim sup — Z (m =)™ | ypngn
(2.36) ) n=0 ,
_ Pn—oPni1 ( A _ Apn) =00
4dpn m-n+A—1 ppi1 e

Then, every solution of equation (1.1) oscillates or converges to zero.
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