• Title/Summary/Keyword: dermal fibroblasts

Search Result 244, Processing Time 0.038 seconds

Stachys riederi var. japonica Extract Reduces Cytochrome C Release from Mitochondria in UVA-irradiated Human Dermal Fibroblasts

  • Hwang, Ji Yeon;Lee, Jae Soon;Kim, Young Chul
    • Quantitative Bio-Science
    • /
    • v.37 no.2
    • /
    • pp.103-111
    • /
    • 2018
  • This study was performed to investigate the cytoprotective effects of Stachys riederi var. japonica ethanol extract (SREE) to control oxidative stress induced by UVA-irradiation by examining antioxidant capacity and gene expression of cytochrome c using human dermal fibroblasts. The total polyphenolics and flavonoids in the SREE were 41.2 and 25.4 mg/g, respectively. At concentrations of 500 and $1000{\mu}g/mL$, the electron-donating ability of SREE was 48.6% and 82.0%, respectively, and the 2,2'-azino-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity was 62.3% and 78.8%, respectively. These findings showed that SREE has a fairly good antioxidant capacity. As determined by an MTT assay, the maximum permissible level for treating SREE to human dermal fibroblasts was shown to be over $200{\mu}g/mL$. SREE ($200{\mu}g/mL$) significantly decreased cytochrome c mRNA and protein expression by 31.1% (p<0.001) and 38.8% (p<0.01), respectively. These findings suggest that SREE may protect human skin cells against mitochondrial-dependent apoptosis. Therefore, SREE seems to be a natural antioxidant to protect cells against oxidative stress induced by UVA-irradiation.

Protective Effect of Processed Panax ginseng, Sun Ginseng on UVB-irradiated Human Skin Keratinocyte and Human Dermal Fibroblast

  • Lee, Hye-Jin;Lee, Joo-Yeop;Song, Kyu-Choon;Kim, Jin-Hee;Park, Jeong-Hill;Chun, Kwang-Hoon;Hwang, Gwi-Seo
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.68-77
    • /
    • 2012
  • In this study, we investigated the protective effects of processed Panax ginseng, sun ginseng (SG) against the UVB-irradiation on epidermal keratinocytes and dermal fibroblasts. Pretreatment of SG in HaCaT keratinocytes and human dermal fibroblasts reduced UVB-induced cell damage as seen by reduced lactate dehydrogenase release. We also found that SG restored the UVB-induced decrease in anti-apoptotic gene expression (bcl-2 and bcl-xL) in these cells, indicating that SG has an anti-apoptotic effect and thus can protect cells from cell death caused by strong UVB radiation. In addition, SG inhibited the excessive expression of c-jun and c-fos gene by the UVB in HeCaT cells and human dermal fibroblasts. We also demonstrated that SG may exert an anti-inflammatory activity by reducing the nitric oxide production and inducible nitric oxide synthase mRNA synthesis in HaCaT keratinocytes and human dermal fibroblasts. This was further supported by its inhibitory effects on the elevated cyclooxygenase-2 and tumor necrosis factor-${\alpha}$ transcription which was induced by UVB-irradiation in HaCaT cells. In addition, SG may have anti-aging property in terms of induction of procollagen gene expression and inhibition of the matrix metalloprotease-1 gene expression caused by UVB-exposure. These findings suggest that SG can be a potential agent that may protect against the dermal cell damage caused by UVB.

인공피부 개발을 위한 생채 적합성 지지체에 관한 연구

  • Kim, Chang-Hwan;Kim, Cheon-Ho;Park, Hyeon-Suk;Gang, Hyeon-Ju;Han, Eun-Suk;Kim, Yun-Yeong;Choe, Yeong-Ju;Lee, Su-Hyeon;Choe, Tae-Bu;Son, Yeong-Suk
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.429-432
    • /
    • 2000
  • Chitosan scaffold is widely applied to drug delivery and tissue engineering. We have developed chitosan scaffolds, with various pore size, by differing freezing temperature and duration of ultraviolet (UV) irradiation, for reconstructing skin equivalent. Chitosan scaffold was coated with type I collagen, fibronectin and basic fibroblast growth factor (bFGF) in various combinations and concentrations, to evaluate the effect of extracellular matrix (ECM) and bFGF on cell adhesion, growth and differentiation of dermal fibroblasts. Human dermal fibroblasts, isolated from newborn foreskin and passaged between 3 and 5, were seeded on the top of scaffolds and cultivated for 2 weeks. We examined the morphology and the secretion of ECM of fibroblasts using scanning electron microsopy (SEM) and histochemistry. A stellate morphology of fibroblasts were seen in all groups. The scaffold coated with either type I collagen and bFGF or type I collagen and fibronectin, however, showed the best condtion of dermal fibroblasts, in that the highest cell number and ECM secretion were seen. On the contrary, scaffolds coated with all three factors, type I collagen, bFGF and fibronectin, showed lower number of cells and ECM secretion than scaffolds with two factors. There was a tendency of dose-dependence in all three factors for fibroblast growth and ECM secretion. In conclusion, we may suggest that chitosan scaffold coated with either type I collagen/bFGF or type I collagen/fibronectin could provide more favorable environment for the growth and differentiation of dermal fibroblasts.

  • PDF

Effects of Oleo Gum Resin of Ferula assa-foetida L. on Senescence in Human Dermal Fibroblasts - Asafoetida reverses senescence in fibroblasts -

  • Moghadam, Farshad Homayouni;Mesbah-Ardakani, Mehrnaz;Nasr-Esfahani, Mohammad Hossein
    • Journal of Pharmacopuncture
    • /
    • v.20 no.3
    • /
    • pp.213-219
    • /
    • 2017
  • Objectives: Based on data from Chinese and Indian traditional herbal medicines, gum resin of Ferula assa-foetida (sometimes referred to asafetida or asafoetida) has several therapeutic applications. The authors of various studies have claimed that asafetida has cytotoxic, antiulcer, anti-neoplasm, anti-cancer, and anti-oxidative effects. In present study, the anti-aging effect of asafetida on senescent human dermal fibroblasts was evaluated. Methods: Senescence was induced in in vitro cultured human dermal fibroblasts (HDFs) through exposure to $H_2O_2$, and the incidence of senescence was recognized by using cytochemical staining for the activity of ${\beta}$-galactosidase. Then, treatment with oleo gum resin of asafetida was started to evaluate its rejuvenating effect. The survival rate of fibroblasts was evaluated by using methyl tetrazolium bromide (MTT) assays. Real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot assays were performed to evaluate the expressions of apoptotic and anti-apoptotic markers. Results: Our experiments show that asafetida in concentrations ranging from $5{\times}10^{-8}$ to $10^{-7}g/mL$ has revitalizing effects on senescent fibroblasts and significantly reduces the ${\beta}$-galactosidase activity in these cells (P < 0.05). Likewise, treatment at these concentrations increases the proliferation rate of normal fibroblasts (P < 0.05). However, at concentrations higher than $5{\times}10^{-7}g/mL$, asafetida is toxic for cells and induces cell death. Conclusion: The results of this study indicate that asafetida at low concentrations has a rejuvenating effect on senescent fibroblasts whereas at higher concentrations, it has the opposite effect of facilitating cellular apoptosis and death.

Ethacrynic Acid and Citral Suppressed the All Trans Retinoid-Induced Monocyte Chemoattractant Protein-1 Production in Human Dermal Fibroblasts

  • Kim, Kwang-Mi;Noh, Min-Soo;Kim, Soo-Hyun;Park, Mi-Kyung;Lee, Hye-Ja;Kim, Soo-Youl;Lee, Chang-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.71-76
    • /
    • 2010
  • Skin irritation caused by retinol and retinoic acid results in mild erythema called as retinoid dermatitis. To develop compounds modulating the retinoid dermatitis, we tried to establish the screening method for retinoid dermatitis. At first we examined the inflammatory cytokine profile in neonatal human dermal fibroblasts which are known to be one of main site of retinoid action. As a result, interleukin-8 (IL-8) and monocytes chemoattractant protein-1 (MCP-1) were significantly produced by all trans retinoic acid (ATRA) and all trans retinol (ATROL) in dermal fibroblasts. Especially the production of MCP-1 was more than that of IL-8. The production of MCP-1 by retinoid was dose-dependently increased, continuing up to 24 hrs. After then using ethacrynic acid (ECA) known to reduce mouse ear edema induced by ATRA, we checked whether ECA suppressed the production of MCP-1. As a result, ECA effectively suppressed the production of MCP-1 in the ATRA- or ATROL-treated-fibroblasts. These results suggested that screening method effectively reflects the in vivo anti-inflammatory activity of ECA. It was reported that citral inhibited the enzyme involved in the conversion of ATROL to ATRA. We showed that citral suppressed the production of MCP-1 in ATROL-treated fibroblasts. We expect these finding might be helpful to find useful compounds modulating the side effects of retinoid or retinoid dermatitis.

Effect of Oncostatin M on Proliferation and Matrix Synthesis of Dermal Fibroblasts (Oncostatin M이 피부섬유모세포의 증식과 기질생성에 미치는 영향)

  • Chun, Kyung Wook;Lim, Hyung Woo;Han, Seung-Kyu;Kim, Woo Kyung
    • Archives of Plastic Surgery
    • /
    • v.35 no.2
    • /
    • pp.115-120
    • /
    • 2008
  • Purpose: Oncostatin M(OSM) is a multifunctional cytokine that belongs to the interleukin(IL)-6 family. Although there have been a number of studies that focused on the role and mechanism of OSM in various organs and tissues, there are few reports on its effect on wound healing. The final purpose of this project is to evaluate the effect of OSM on wound healing. This pilot study was designed to investigate the effect of OSM on proliferation and matrix synthesis of human dermal fibroblasts, which are the major components of the wound healing. Methods: Excess skin that was obtained from patients who underwent skin grafts, was used for this study. From this material, fibroblasts were isolated and cultured. The cultured fibroblasts were treated with one of four concentrations of OSM. The OSM concentrations used were 0, 50, 100, and 200 ng/ml, respectively. After the OSM treatment, cell proliferation was determined by the MTT assay, collagen synthesis by the C1CP method, GAG levels by the Blyscan Dye method. The parameter levels of each group were compared. Results: OSM treatment increased all the components tested in the study. In particular, cell proliferation, GAG synthesis demonstrated statistically significant increases(p<0.05 in the Mann-Whitney U-test). The highest increase in all the components was obtained at a 100 ng/ml concentration of OSM.Conclusion: The results of the present study indicate that OSM stimulates proliferation and matrix synthesis of human dermal fibroblast and the optimal concentration for wound healing is 100 ng/mL.

Autotransplantation using the acellular dermal matrix seeded by periodontal ligament fibroblasts in minipig: histological evaluation as potential periodontal ligament substitutes (미니돼지에서 Acellular dermal matrix에 배양된 치주인대섬유모세포을 이용한 자가치아이식술: 치주인대로써의 잠재력에 대한 조직학적 평가)

  • Yu, Sang-Joun;Kim, Byung-Ock;Park, Joo-Cheol;Jang, Hyun-Seon
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.1
    • /
    • pp.53-64
    • /
    • 2007
  • The aim of this study was to examine the possibility of periodontal ligament regeneration when autotransplantation was used by the periodontal ligament fibroblasts cultured on the acellular dermal matrix in teeth without a periodontal ligament. One minipig was used in this study. The mandibular and maxillary permanent incisors were ex-tracted for the culture of the periodontal ligament cells. The roots of the unextracted teeth were classified into a positive control group, in which the normal periodontal ligament was preserved. The roots of the extracted teeth were divided into the following two groups: The negative control group, in which the periodontal ligament had been removed and the acellular dermal matrix was not applied; and an experimental group, in which the periodontal ligament had been removed and periodontal ligament fibroblast cultured on an acellular dermal matrix was applied. The prepared teeth were transplanted, and completely submerged using physical barrier membranes. The animal was sacrificed 4 weeks after the autotransplant. The transplanted teeth were examined histologically. In this study, the periodontal ligament was normal in the positive control group, and ankylosis was discovered on the denuded root surface in the negative control group. Periodontal ligament-like connective tissue was found adjacent to the denuded root and the new cementum-like layer of hard tissue was formed in the experimental group. These results suggest that the periodontal ligament fibroblasts cultured on the acellular dermal matrix may play a role in regenerating the periodontal ligament-like tissue with new cememtum-like tissue formation.

Anti-Photoaging Effects of Angelica acutiloba Root Ethanol Extract in Human Dermal Fibroblasts

  • Park, Min Ah;Sim, Mi Ja;Kim, Young Chul
    • Toxicological Research
    • /
    • v.33 no.2
    • /
    • pp.125-134
    • /
    • 2017
  • The effects that ultraviolet rays elicit on collagen synthesis and degradation are the most common causes of wrinkle formation and photo-aging in skin. The objectives of this study were to evaluate the effects of Angelica acutiloba root ethanol extract (AAEE) to promote collagen synthesis and inhibit collagen degradation in human dermal fibroblasts. By examining total polyphenol and flavonoid contents, electron donating ability, radical scavenging activity, and superoxide dismutase-like activity, we found that AAEE exhibited fairly good antioxidant activity. Treatment with AAEE significantly increased type I procollagen production by cultured fibroblasts, as well as reduced ultraviolet-induced matrix metalloproteinase-1 (MMP-1) expression and MMP-2 activity in a dose-dependent manner (p < 0.05). In addition, AAEE significantly increased TIMP-1 mRNA expression (p < 0.05), although without an associated dose-dependent increase in TIMP-1 protein expression. In summary, we suggest that AAEE may be a potentially effective agent for the prevention or alleviation of skin-wrinkle formation induced by ultraviolet rays.

Processed Panax ginseng, Sun Ginseng Increases Type I Collagen by Regulating MMP-1 and TIMP-1 Expression in Human Dermal Fibroblasts

  • Song, Kyu-Choon;Chang, Tong-Shin;Lee, Hye-Jin;Kim, Jin-Hee;Park, Jeong-Hill;Hwang, Gwi-Seo
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.61-67
    • /
    • 2012
  • In the present study, effects of sun ginseng (SG) on the collagen synthesis and the proliferation of dermal fibroblast were investigated. Collagen synthesis was measured by assaying procollagen type I C-peptide production. In addition, the level of matrix metalloproteinase (MMP)-1 was assessed by western blot analysis. SG suppressed the MMP-1 protein level in a dose-dependent manner. In contrast, SG dose-dependently increased tissue inhibitors of MMP (TIMP)-1 production in fibroblasts. SG increased type I collagen production directly and/or indirectly by reducing MMP-1 and stimulating TIMP-1 production in human dermal fibroblasts. SG dose-dependently induced fibroblast proliferation and this, in turn, can trigger more collagen production. These results suggest that SG may be a potential pharmacological agent with anti-aging properties in cultured human skin fibroblast.

Effect of Oncostatin M on Wound Healing Activity of Diabetic Fibroblasts in vitro (Oncostatin M이 당뇨 환자 섬유모세포의 창상치유능에 미치는 영향)

  • Lim, Hyung Woo;Chun, Kyung Wook;Han, Seung-Kyu;Kim, Woo Kyung
    • Archives of Plastic Surgery
    • /
    • v.35 no.4
    • /
    • pp.355-359
    • /
    • 2008
  • Purpose: Oncostatin M(OSM) has been known as a role in fibrosis and anti-inflammatory effects of various organs and tissues. Although there have been a number of studies which are focused on the roles and mechanisms of OSM, there are few reports on its effects in chronic wound healing. The purpose of this study is to evaluate the effects of OSM in wound healing activities of dermal fibroblasts of chronic wound in vitro. In particular, this study is focused on cell proliferation and synthesis of collagen and glycosaminoglycan(GAG), which are the major components of the extracellular matrices, of diabetic fibroblasts. Methods: Fibroblasts were isolated from excess skin that was obtained from diabetic foot ulcer patients who underwent debridement. The isolated fibroblasts were cultivated in presence of OSM(100 ng/mL). Cell proliferation, collagen synthesis and GAG levels were compared. Results: All the components tested in this study increased in OSM treatment group. In particular, collagen and GAG synthesis demonstrated statistically significant increases(p<0.05 in the Mann-Whitney U-test). Conclusion: These results indicate that OSM increases wound healing activities of dermal fibroblasts of chronic wound in vitro.