DOI QR코드

DOI QR Code

Ethacrynic Acid and Citral Suppressed the All Trans Retinoid-Induced Monocyte Chemoattractant Protein-1 Production in Human Dermal Fibroblasts

  • Kim, Kwang-Mi (Skin Research Institute Amore-Pacific Corporation R & D Center) ;
  • Noh, Min-Soo (Skin Research Institute Amore-Pacific Corporation R & D Center) ;
  • Kim, Soo-Hyun (Skin Research Institute Amore-Pacific Corporation R & D Center) ;
  • Park, Mi-Kyung (Department of Life Science, Dongguk University) ;
  • Lee, Hye-Ja (Department of Life Science, Dongguk University) ;
  • Kim, Soo-Youl (Cancer Biology Branch, National Cancer Center) ;
  • Lee, Chang-Hoon (Department of Life Science, Dongguk University)
  • Published : 2010.01.31

Abstract

Skin irritation caused by retinol and retinoic acid results in mild erythema called as retinoid dermatitis. To develop compounds modulating the retinoid dermatitis, we tried to establish the screening method for retinoid dermatitis. At first we examined the inflammatory cytokine profile in neonatal human dermal fibroblasts which are known to be one of main site of retinoid action. As a result, interleukin-8 (IL-8) and monocytes chemoattractant protein-1 (MCP-1) were significantly produced by all trans retinoic acid (ATRA) and all trans retinol (ATROL) in dermal fibroblasts. Especially the production of MCP-1 was more than that of IL-8. The production of MCP-1 by retinoid was dose-dependently increased, continuing up to 24 hrs. After then using ethacrynic acid (ECA) known to reduce mouse ear edema induced by ATRA, we checked whether ECA suppressed the production of MCP-1. As a result, ECA effectively suppressed the production of MCP-1 in the ATRA- or ATROL-treated-fibroblasts. These results suggested that screening method effectively reflects the in vivo anti-inflammatory activity of ECA. It was reported that citral inhibited the enzyme involved in the conversion of ATROL to ATRA. We showed that citral suppressed the production of MCP-1 in ATROL-treated fibroblasts. We expect these finding might be helpful to find useful compounds modulating the side effects of retinoid or retinoid dermatitis.

Keywords

References

  1. Ajuebor, M. N., Flower, R. J., Hannon, R., Christie, M., Bowers, K., Verity, A. and Perretti, M. (1998). Endogenous monocyte chemoattractant protein-1 recruits monocytes in the zymosan peritonitis model. J. Leukoc. Biol. 63, 108-116. https://doi.org/10.1002/jlb.63.1.108
  2. Baggiolini, M. and Clark-Lewis, I. (1992). Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett. 307, 97-101. https://doi.org/10.1016/0014-5793(92)80909-Z
  3. Boehm, M. F., Heyman R. A., Patel, S., Stein, R. B. and Nagpal, S. (1995). Retinoids: biological function and use in the treatment of dermatological diseases. Exp. Opin. Invest. Drugs 4, 593-612. https://doi.org/10.1517/13543784.4.7.593
  4. Brand, N., Petkovich, M., Krust, A., Chambon, P., de The, H., Marchio, A., Tiollais, P. and Dejean, A. (1988). Identification of a second human retinoic acid receptor. Nature 332, 850-853. https://doi.org/10.1038/332850a0
  5. Connor, M. J. and Smit, M. H. (1987). Terminal-group oxidation of retinol by mouse epidermis. Inhibition in vitro and in vivo. Biochem. J. 244, 489-492. https://doi.org/10.1042/bj2440489
  6. Dai, X., Yamasaki, K., Shirakata, Y., Sayama, K. and Hashimoto, K. (2004). All-trans-retinoic acid induces interleukin-8 via the nuclear factor-kappaB and p38 mitogen-activated protein kinase pathways in normal human keratinocytes. J. Invest. Dermatol. 123, 1078-1085. https://doi.org/10.1111/j.0022-202X.2004.23503.x
  7. Djeu, J. Y., Matsushima, K., Oppenheim, J. J., Shiotsuki, K. and Blanchard, D. K. (1990). Functional activation of human neutrophils by recombinant monocyte-derived neutrophil chemotactic factor/IL-8. J. Immunol. 144, 2205-2210.
  8. Fisher, G. J., Esmann, J., Griffiths, C. E., Talwar, H. S., Duell, E. A., Hammerberg, C., Elder, J. T., Finkel, L. J., Karabin, G. D., Nickoloff, B. J., Cooper K. D. and Voorhees, J. J. (1991). Cellular, immunologic and biochemical characterization of topical retinoic acid-treated human skin. J. Invest. Dermatol. 96, 699-707. https://doi.org/10.1111/1523-1747.ep12470632
  9. Ip, W. K., Wong, C. K. and Lam, C. W. (2006). Interleukin (IL)-4 and IL-13 up-regulate monocyte chemoattractant protein-1 expression in human bronchial epithelial cells: involvement of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2 and Janus kinase-2 but not c-Jun NH2-terminal kinase 1/2 signalling pathways. Clin. Exp. Immunol. 145, 162-172. https://doi.org/10.1111/j.1365-2249.2006.03085.x
  10. Kang, S., Duell, E. A., Fisher, G. J., Datta, S. C., Wang, Z. Q., Reddy, A. P., Tavakkol, A., Yi, J. Y., Griffiths, C. E., Elder, J. T. and Voorhees, J. J. (1995). Application of retinol to human skin in vivo induces epidermal hyperplasia and cellular retinoid binding proteins characteristic of retinoic acid but without measurable retinoic acid levels or irritation. J. Invest. Dermatol. 105, 549-556. https://doi.org/10.1111/1523-1747.ep12323445
  11. Kligman, L. H., Yang, S. and Schwartz, E. (1999). Steady-state mRNA levels of interleukin-1, integrins, cJun, and cFos in hairless mouse skin during short-term chronic UV exposure and the effect of topical tretinoin. Photodermatol. Photoimmunol. Photomed. 15, 198-204. https://doi.org/10.1111/j.1600-0781.1999.tb00085.x
  12. Kuna, P., Reddigari, S. R., Kornfeld, D. and Kaplan, A. P. (1991). IL-8 inhibits histamine release from human basophils induced by histamine-releasing factors, connective tissue activating peptide III, and IL-3. J. Immunol. 147, 1920-1924.
  13. Li, G., Bush, J. A. and Ho, V. C. (2000). Effect of retinoic acid on apoptosis and DNA repair in human keratinocytes after UVB irradiation. J. Cutan. Med. Surg. 4, 2-7. https://doi.org/10.1177/120347540000400102
  14. Mangelsdorf, D. J., Borgmeyer, U., Heyman, R. A., Zhou, J. Y., Ong, E. S., Oro, A. E., Kakizuka, A. and Evans, R. M. (1992). Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev. 6, 329-344. https://doi.org/10.1101/gad.6.3.329
  15. Mukaida, N., Harada, A., Yasumoto, K. and Matsushima, K. (1992). Properties of pro-inflammatory cell type-specific leukocyte chemotactic cytokines, interleukin 8 (IL-8) and monocyte chemotactic and activating factor (MCAF). Microbiol. Immunol. 36, 773-789. https://doi.org/10.1111/j.1348-0421.1992.tb02080.x
  16. Newby, C. S., Barr, R. M., Greaves, M. W. and Mallet, A. I. (2000). Cytokine release and cytotoxicity in human keratinocytes and fibroblasts induced by phenols and sodium dodecyl sulfate. J. Invest. Dermatol. 115, 292-298. https://doi.org/10.1046/j.1523-1747.2000.00056.x
  17. Orfanos, C. E., Stadler, R., Gollnick, H. and Tsambaos, D. (1985). Current developments of oral retinoid therapy with three generations of drugs. Non-aromatic, monoaromatic and polyaromatic retinoids (arotinoids). Curr. Probl. Dermatol. 13, 33-49.
  18. Petkovich, M., Brand, N. J., Krust, A. and Chambon, P. (1987). A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330, 444-450. https://doi.org/10.1038/330444a0
  19. Postlethwaite A. E. (1993). Dermal immune system. CRC Press Inc., Boca Raton.
  20. Rantapaa-Dahlqvist, S., Boman, K., Tarkowski, A. and Hallmans, G. (2007). Up regulation of monocyte chemoattractant protein-1 expression in anti-citrulline antibody and immunoglobulin M rheumatoid factor positive subjects precedes onset of inflammatory response and development of overt rheumatoid arthritis. Ann. Rheum. Dis. 66, 121-123. https://doi.org/10.1136/ard.2006.057331
  21. Schwarz, E. J., Reginato, M. J., Shao, D., Krakow, S. L. and Lazar, M. A. (1997). Retinoic acid blocks adipogenesis by inhibiting C/EBPbeta-mediated transcription. Mol. Cell Biol. 17, 1552-1561. https://doi.org/10.1128/MCB.17.3.1552
  22. Shalita, A., Weiss, J. S., Chalker, D. K., Ellis, C. N., Greenspan, A., Katz, H. I., Kantor, I., Millikan, L. E., Swinehart, T., Swinyer, L., Whitmore, C., Baker, M. and Czernielewski, J. (1996). A comparison of the efficacy and safety of adapalene gel 0.1% and tretinoin gel 0.025% in the treatment of acne vulgaris: a multicenter trial. J. Am. Acad. Dermatol. 34, 482-485. https://doi.org/10.1016/S0190-9622(96)90443-0
  23. Spoettl, T., Hausmann, M., Herlyn, M., Gunckel, M., Dirmeier, A., Falk, W., Herfarth, H., Schoelmerich, J. and Rogler, G. (2006). Monocyte chemoattractant protein-1 (MCP-1) inhibits the intestinal-like differentiation of monocytes. Clin. Exp. Immunol. 145, 190-199. https://doi.org/10.1111/j.1365-2249.2006.03113.x
  24. Tsai, W. H., Shih, C. H., Lin, C. C., Ho, C. K., Hsu, F. C. and Hsu, H. C. (2008). Monocyte chemotactic protein-1 in the migration of differentiated leukaemic cells toward alveolar epithelial cells. Eur. Respir. J. 31, 957-962. https://doi.org/10.1183/09031936.00135707
  25. Tsao, M. C., Walthall, B. J. and Ham, R. G. (1982). Clonal growth of normal human epidermal keratinocytes in a defined medium. J. Cell Physiol. 110, 219-229. https://doi.org/10.1002/jcp.1041100217
  26. Varani, J., Fisher, G. J., Kang, S. and Voorhees, J. J. (1998). Molecular mechanisms of intrinsic skin aging and retinoid-induced repair and reversal. J. Investig. Dermatol. Symp. Proc. 3, 57-60. https://doi.org/10.1038/jidsp.1998.14
  27. Wille, J. J., Kydonieus, A. F. and Kalish, R. S. (2000). Ion channel modulation of contact dermatitis. In Biochemical modulation of skin reactions: transdermals, topicals, cosmetics (A.F. Kydonieus, and J. J. Wille Ed.), pp. 233-244. CRC Press LLC, Boca Raton
  28. Zlotnik, A. and Yoshie, O. (2000). Chemokines: a new classification system and their role in immunity. Immunity 12, 121-127. https://doi.org/10.1016/S1074-7613(00)80165-X

Cited by

  1. The retinoic acid-induced up-regulation of insulin-like growth factor 1 and 2 is associated with prolidase-dependent collagen synthesis in UVA-irradiated human dermal equivalents vol.66, pp.1, 2012, https://doi.org/10.1016/j.jdermsci.2011.12.008
  2. Ethacrynic Acid Inhibits Sphingosylphosphorylcholine-Induced Keratin 8 Phosphorylation and Reorganization via Transglutaminase-2 Inhibition vol.21, pp.5, 2013, https://doi.org/10.4062/biomolther.2013.066