DOI QR코드

DOI QR Code

Anti-Photoaging Effects of Angelica acutiloba Root Ethanol Extract in Human Dermal Fibroblasts

  • Park, Min Ah (In Vitro Evaluation Team, Ellead Sin & Bio Research) ;
  • Sim, Mi Ja (Department of Health & Beauty Science, Gyeongbuk Provincial College) ;
  • Kim, Young Chul (Department of Public Health, Graduate School, Keimyung University)
  • Received : 2017.02.06
  • Accepted : 2017.03.23
  • Published : 2017.04.15

Abstract

The effects that ultraviolet rays elicit on collagen synthesis and degradation are the most common causes of wrinkle formation and photo-aging in skin. The objectives of this study were to evaluate the effects of Angelica acutiloba root ethanol extract (AAEE) to promote collagen synthesis and inhibit collagen degradation in human dermal fibroblasts. By examining total polyphenol and flavonoid contents, electron donating ability, radical scavenging activity, and superoxide dismutase-like activity, we found that AAEE exhibited fairly good antioxidant activity. Treatment with AAEE significantly increased type I procollagen production by cultured fibroblasts, as well as reduced ultraviolet-induced matrix metalloproteinase-1 (MMP-1) expression and MMP-2 activity in a dose-dependent manner (p < 0.05). In addition, AAEE significantly increased TIMP-1 mRNA expression (p < 0.05), although without an associated dose-dependent increase in TIMP-1 protein expression. In summary, we suggest that AAEE may be a potentially effective agent for the prevention or alleviation of skin-wrinkle formation induced by ultraviolet rays.

Keywords

References

  1. Tzaphlidou, M. (2004) The role of collagen and elastin in aged skin: an image processing approach. Micron, 35, 173-177. https://doi.org/10.1016/j.micron.2003.11.003
  2. Song, K.C., Chang, T.S., Lee, H.J., Kim, J.H., Park, J.H. and Hwang, G.S. (2012) Processed Panax ginseng, sun ginseng increases type I collagen by regulating MMP-1 and TIMP-1 expression in human dermal fibroblasts. J. Ginseng Res., 36, 61-67. https://doi.org/10.5142/jgr.2012.36.1.61
  3. Varani, J., Dame, M.K., Rittie, L., Fligiel, S.E., Kang, S., Fisher, G.J. and Voorhees, J.J. (2006) Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and detective mechanical stimulation. Am. J. Pathol., 168, 1861-1868. https://doi.org/10.2353/ajpath.2006.051302
  4. Honda, A., Abe, R., Makino, T., Norisugi, O., Fujita, Y., Watanabe, H., Nishihira, J., Iwakura, Y., Yamagishi, S.I., Shimizu, H. and Shimizu, T. (2008) Interleukin-$1{\beta}$ and macrophage migration inhibitory factor (MIF) in dermal fibroblasts mediate UVA-induced matrix metalloproteinase-1 expression. J. Dermatol. Sci., 49, 63-72. https://doi.org/10.1016/j.jdermsci.2007.09.007
  5. Brew, K., Deendayal, D. and Nagase, H. (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim. Biophys. Acta, 1477, 267-283. https://doi.org/10.1016/S0167-4838(99)00279-4
  6. Dasu, M.R., Barrow, R.E., Spies, M. and Herndon, D.N. (2003) Matrix metalloproteinase expression in cytokine stimulated human dermal fibroblasts. Burns, 29, 527-531. https://doi.org/10.1016/S0305-4179(03)00154-2
  7. Tokumaru, Y., Fujii, M., Otani, Y., Kameyama, K., Imanishi, Y., Igarashi, N. and Kanzaki, J. (2000) Activation of matrix metalloproteinase-2 in head and neck squamous cell carcinoma: studies of clinical samples and in vitro cell lines co-cultured with fibroblasts. Cancer Lett., 150, 15-21. https://doi.org/10.1016/S0304-3835(99)00371-7
  8. Godeau, G. and Hornebeck, W. (1988) Morphometric analysis of the degradation of human skin elastic fibres by human leukocyte elastase (EC 3-4-21-37) and human skin fibroblast elastase (EC 3-4-24). Pathol. Biol., 36, 1133-1138.
  9. Kim, M.S., Lee, S.R., Rho, H.S., Kim, D.H., Chang, I.S. and Chung, J.H. (2005) The effects of a novel synthetic retinoid, seletinoid G, on the expression of extracellular matrix proteins in aged human skin in vivo. Clin. Chim. Acta, 362, 161-169. https://doi.org/10.1016/j.cccn.2005.06.016
  10. Ha, B.G., Park, M.A. Lee, C.M. and Kim, Y.C. (2015) Antioxidant activity and anti-wrinkle effects of Aceriphyllum rossii leaf ethanol extract. Toxicol. Res., 31, 363-369. https://doi.org/10.5487/TR.2015.31.4.363
  11. Kim, S.E., Lee, C.M. and Kim, Y.C. (2016) Anti-wrinkle efficacy of Oenothera laciniata methanol extract in human dermal fibroblasts. J. Invest. Cosmotol., 12, 197-203. https://doi.org/10.15810/jic.2016.12.3.001
  12. Sheng, Y.X., Li, L., Wang, Q., Guo, H.Z. and Guo, D.A. (2005) Simultaneous determination of gallic acid, albiflorin, paeoniflorin, ferulic acid and benzoic acid in Si-Wu decoction by high-performance liquid chromatography DAD method. J. Pharm. Biomed. Anal., 37, 805-810. https://doi.org/10.1016/j.jpba.2004.11.002
  13. Wen, K.C., Huang, C.Y. and Lu, F.L. (1993) Determination of baicalin and puerarin in traditional Chinese medicinal preparations by high-performance liquid chromatography. J. Chromatogr. A, 631, 241-250. https://doi.org/10.1016/0021-9673(93)80528-G
  14. Namba, T. (1993) Angelicae Radix, Hoikusha, Osaka, pp. 58-61.
  15. Kim, A.R., Lee, J.J. and Lee, M.Y. (2009) Antioxidative effect of Angelica acutiloba Kitagawa ethanol extract. J. Life Sci., 19, 117-122. https://doi.org/10.5352/JLS.2009.19.1.117
  16. Folin, O. and Denis, W. (1912) On phosphotungstic-phosphomolybdic compounds as color reagents. J. Biol. Chem., 12, 239-243.
  17. Davis, R., Massey, R.C. and McWeeny, D.J. (1980) The catalysis of the N-nitrosation of secondary amines by nitrosophenols. Food Chem., 6, 115-122. https://doi.org/10.1016/0308-8146(80)90027-8
  18. Blois, M.S. (1958) Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200. https://doi.org/10.1038/1811199a0
  19. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  20. Marklund, S. and Marklund, G. (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 47, 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  21. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265-275.
  22. Joo, S.S., Park, D., Shin, S., Jeon, J.H., Kim, T.K., Choi, Y.J., Lee, S.H., Kim, J.S., Park, S.K., Hwang, B.Y., Lee, D.I. and Kim, Y.B. (2010) Anti-allergic effects and mechanisms of action of the ethanolic extract of Angelica gigas in dinitrofluorobenzene- induced inflammation models. Environ. Toxicol. Pharmacol., 30, 127-133. https://doi.org/10.1016/j.etap.2010.04.007
  23. Wang, N.L., Kiyohara, H., Sakurai, M.H. and Yamada, H. (1999) Antigenic epitope for polyclonal antibody against a complement activating pectin from the roots of Angelica acutiloba Kitagawa. Carbohydr. Polym., 39, 257-264. https://doi.org/10.1016/S0144-8617(99)00009-0
  24. Bickers, D.R. and Athar, M. (2006) Oxidative stress in the pathogenesis of skin disease. J. Invest. Dermatol., 126, 2565- 2575. https://doi.org/10.1038/sj.jid.5700340
  25. Scharffetter-Kochanek, K., Brenneisen, P., Wenk, J., Herrmann, G., Ma, W., Kuhr, L., Meewes, C. and Wlaschek, M. (2000) Photoaging of the skin from phenotype to mechanisms. Exp. Gerontol., 35, 307-316. https://doi.org/10.1016/S0531-5565(00)00098-X
  26. Miao, Y.P., Wen, R., Aoshima, H. and Zhou, P.G. (2004) Synthesis and antioxidative activity of 2-substituted phenyl-5-(3'- indolyl)-oxazole derivatives. Yao Xue Xue Bao, 39, 37-40.
  27. Park, S.J., Yoon, J.H., Kim, Y.E., Yoon, Y.B. and Kim, J.D. (2011) In vitro antioxidant activity of the aqueous of Angelicae gigas Nakai leaves. Korean J. Food Preserv., 18, 817-823. https://doi.org/10.11002/kjfp.2011.18.6.817
  28. Mimura, Y., Ihn, H., Jinnin, M., Asano, Y., Yamane, K. and Tamaki, K. (2006) Epidermal growth factor affects the synthesis and degradation of type I collagen in cultured human dermal fibroblasts. Matrix Biol., 25, 202-212. https://doi.org/10.1016/j.matbio.2005.12.002
  29. Pasquali-Ronchetti, I. and Baccarani-Contri, M. (1997) Elastic fiber during development and aging. Microsc. Res. Tech., 38, 428-435. https://doi.org/10.1002/(SICI)1097-0029(19970815)38:4<428::AID-JEMT10>3.0.CO;2-L
  30. Bruckner-Tuderman, L., Schnyder, U.W., Winterhalter, K.H. and Bruckner, P. (1987) Tissue form of type VII collagen from human skin and dermal fibroblasts in culture. Eur. J. Biochem., 165, 607-611. https://doi.org/10.1111/j.1432-1033.1987.tb11483.x
  31. Di Lullo, G.A., Sweeney, S.M., Körkkö, J., Ala-Kokko, L. and San Antonio, J.D. (2002) Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem., 277, 4223- 4231. https://doi.org/10.1074/jbc.M110709200
  32. Talwar, H.S., Griffiths, C.E., Fisher, G.J., Hamilton, T.A. and Voorhees, J.J. (1995) Reduced type I and type III procollagens in photodamaged adult human skin. J. Invest. Dermatol., 105, 285-290. https://doi.org/10.1111/1523-1747.ep12318471
  33. Gordon, M.K. and Hahn, R.A. (2010) Collagens. Cell Tissue Res., 339, 247-257. https://doi.org/10.1007/s00441-009-0844-4
  34. Lee, J.H., Lee, S.N., Kim, M.G., Kim, M.H., Kim, H.J., Jo, H.J. and Leem, K.H. (2011) Effects of Angelica gigantis Radix extracts on the collagenase activity and procollagen synthesis in HS68 human fibroblasts and tyrosinase activity. Korea J. Herbol., 26, 29-33.
  35. Borkakoti, N. (1998) Matrix metalloproteases: variations on a theme. Prog. Biophys. Mol. Biol., 70, 73-94. https://doi.org/10.1016/S0079-6107(98)00003-0
  36. Herman, M.P., Sukhova, G.K., Kisiel, W., Foster, D., Kehry, M.R., Libby, P. and Schönbeck, U. (2001) Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis. J. Clin. Invest., 107, 1117-1126. https://doi.org/10.1172/JCI10403
  37. Sternlicht, M.D. and Werb, Z. (2001) How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol., 17, 463-516. https://doi.org/10.1146/annurev.cellbio.17.1.463
  38. Hwang, B.M., Noh, E.M., Kim, J.S., Kim, J.M., Hwang, J.K., Kim, H.K., Kang, J.S., Kim, D.S., Chae, H.J., You, Y.O., Kwon, K.B. and Lee, Y.R. (2013) Decursin inhibits UVBinduced MMP expression in human dermal fibroblasts via regulation of nuclear factor-${\kappa}B$. Int. J. Mol. Med., 31, 477-483. https://doi.org/10.3892/ijmm.2012.1202
  39. Kahari, V.M. and Saarialho-Kere, U. (1997) Matrix metalloproteinases in skin. Exp. Dermatol., 6, 199-213. https://doi.org/10.1111/j.1600-0625.1997.tb00164.x
  40. Aimes, R.T. and Quigley, J.P. (1995) Matrix metalloproteinase- 2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. J. Biol. Chem., 270, 5872-5876. https://doi.org/10.1074/jbc.270.11.5872
  41. You, M.A., Song, Y.K., Jang, H., Kim, D.M. and Byun, S.Y. (2011) Profiling of skin anti-aging related proteins in human dermal fibroblasts by decursin in Angelica gigas Nakai. Korean J. Chem. Eng., 28, 880-885. https://doi.org/10.1007/s11814-010-0430-1
  42. Hwang, B.M., Noh, E.M., Kim, J.S., Kim, J.M., Hwang, J.K., Kim, H.K., Kang, J.S., Kim, D.S., Chae, H.J., You, Y.O., Kwon, K.B. and Lee, Y.R. (2013) Decursin inhibits UVBinduced MMP expression in human dermal fibroblasts via regulation of nuclear factor-${\kappa}B$. Int. J. Mol. Med., 31, 477-483. https://doi.org/10.3892/ijmm.2012.1202

Cited by

  1. The Red Algae Compound 3-Bromo-4,5-dihydroxybenzaldehyde Protects Human Keratinocytes on Oxidative Stress-Related Molecules and Pathways Activated by UVB Irradiation vol.15, pp.9, 2017, https://doi.org/10.3390/md15090268
  2. using a 13-week repeated dose oral toxicity study in rats vol.33, pp.3, 2017, https://doi.org/10.5625/lar.2017.33.3.223
  3. in a standard battery of assays vol.33, pp.3, 2017, https://doi.org/10.5625/lar.2017.33.3.231
  4. Risk management of free radicals involved in air travel syndromes by antioxidants vol.21, pp.2, 2018, https://doi.org/10.1080/10937404.2018.1427914