• Title/Summary/Keyword: derivations

Search Result 464, Processing Time 0.026 seconds

ON GENERALIZED SYMMETRIC BI-DERIVATIONS IN PRIME RINGS

  • Ozturk, M. Ali;Sapanci, Mehmet
    • East Asian mathematical journal
    • /
    • v.15 no.2
    • /
    • pp.165-176
    • /
    • 1999
  • After the derivation was defined in [19] by Posner a lot of researchers studied the derivations in ring theory in different manners such as in [2], [4], [5], ..., etc. Furthermore, many researches followed the definition of the generalized derivation([3], [6], [7], ..., etc.). Finally, Maksa defined a symmetric bi-derivation and many researches have been done in ring theory by using this definition. In this work, defining a symmetric bi-$\alpha$-derivation, we study the mentioned researches above in the light of this new concept.

  • PDF

ON GENERALIZED TRIANGULAR MATRIX RINGS

  • Chun, Jang Ho;Park, June Won
    • East Asian mathematical journal
    • /
    • v.30 no.3
    • /
    • pp.259-270
    • /
    • 2014
  • For a generalized triangular matrix ring $$T=\[\array{R\;M\\0\;S}]$$, over rings R and S having only the idempotents 0 and 1 and over an (R, S)-bimodule M, we characterize all homomorphisms ${\alpha}$'s and all ${\alpha}$-derivations of T. Some of the homomorphisms are compositions of an inner homomorphism and an extended or a twisted homomorphism.

ON GENERALIZED RIGHT f-DERIVATIONS OF 𝚪-INCLINE ALGEBRAS

  • Kim, Kyung Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.119-129
    • /
    • 2021
  • In this paper, we introduce the concept of a generalized right f-derivation associated with a derivation d and a function f in 𝚪-incline algebras and give some properties of 𝚪-incline algebras. Also, the concept of d-ideal is introduced in a 𝚪-incline algebra with respect to right f-derivations.

PSEUDO JORDAN HOMOMORPHISMS AND DERIVATIONS ON MODULE EXTENSIONS AND TRIANGULAR BANACH ALGEBRAS

  • Ebadian, Ali;Farajpour, Fariba;Najafzadeh, Shahram
    • Honam Mathematical Journal
    • /
    • v.43 no.1
    • /
    • pp.68-77
    • /
    • 2021
  • This paper considers pseudo Jordan homomorphisms on module extensions of Banach algebras and triangular Banach algebras. We characterize pseudo Jordan homomorphisms on module extensions of Banach algebras and triangular Banach algebras. Moreover, we define pseudo derivations on the above stated Banach algebras and characterize this new notion on those algebras.

STUDY OF QUOTIENT NEAR-RINGS WITH ADDITIVE MAPS

  • Abdelkarim Boua;Abderrahmane Raji;Abdelilah Zerbane
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.353-361
    • /
    • 2024
  • We consider 𝒩 to be a 3-prime field and 𝒫 to be a prime ideal of 𝒩. In this paper, we study the commutativity of the quotient near-ring 𝒩/𝒫 with left multipliers and derivations satisfying certain identities on 𝒫, generalizing some well-known results in the literature. Furthermore, an example is given to illustrate the necessity of our hypotheses.

GENERALIZED DERIVATIONS IN RING WITH INVOLUTION INVOLVING SYMMETRIC AND SKEW SYMMETRIC ELEMENTS

  • Souad Dakir;Hajar El Mir;Abdellah Mamouni
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • In this paper we will demonstrate some results on a prime ring with involution by introducing two generalized derivations acting on symmetric and skew symmetric elements. This approach allows us to generalize some well known results. Furthermore, we provide examples to show that various restrictions imposed in the hypotheses of our theorems are not superfluous.

ON COMMUTING CONDITIONS OF SEMIRINGS WITH INVOLUTION

  • LIAQAT ALI;MUHAMMAD ASLAM;MAWAHIB ELAMIN;HUDA UONES MOHAMED AHAMD;NEWMA YAHIA;LAXMI RATHOUR
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.2
    • /
    • pp.417-432
    • /
    • 2024
  • In this research article, we study a class of semirings with involution. Differential identities involving two or three derivations of a semiring with second kind involution are investigated. It is analyzed that how these identities, with a special role for second kind involution, bring commutativity to semirings.