STUDY OF QUOTIENT NEAR-RINGS WITH ADDITIVE MAPS

Abdelkarim Boua, Abderrahmane Raji, and Abdelilah Zerbane

Abstract

We consider \mathcal{N} to be a 3 -prime field and \mathcal{P} to be a prime ideal of \mathcal{N}. In this paper, we study the commutativity of the quotient near-ring $\mathcal{N} / \mathcal{P}$ with left multipliers and derivations satisfying certain identities on P, generalizing some well-known results in the literature. Furthermore, an example is given to illustrate the necessity of our hypotheses.

1. Introduction

Throughout this paper, a left near-ring \mathcal{N} is a triple $(\mathcal{N},+,$.$) with two binary$ operations " + " and "." such that (i) $(\mathcal{N},+)$ is a group (not necessarily abelian), (ii) $(\mathcal{N},$.$) is a semigroup, (iii) c .(a+b)=c . a+c . b$ for all $a, b, c \in$ \mathcal{N}. The multiplicative center of \mathcal{N} named as $Z(\mathcal{N}), \mathcal{N} / \mathcal{P}$ is a quotient nearring with the multiplicative center $Z(\mathcal{N} / \mathcal{P})$, where \mathcal{P} is a 3-prime ideal of \mathcal{N}. Usually, \mathcal{N} will be 3 -prime, that is, will have the property that $x \mathcal{N} y=\{0\}$ for $x, y \in \mathcal{N}$ implies $x=0$ or $y=0$; and \mathcal{N} is called 2-torsion free if \mathcal{N} has no element of order 2 . For any pair $x, y \in \mathcal{N}$, we write $[x, y]=x y-y x$ and $(x \circ y)=x y+y x$ to denote the commutator and anticommutator, respectively. A derivation on \mathcal{N} is an additive endomorphism d of \mathcal{N} such that $d(x y)=$ $x d(y)+d(x) y$ for all $x, y \in \mathcal{N}$. An additive mapping $H: \mathcal{N} \rightarrow \mathcal{N}$ is said to be a left multiplier (resp. right multiplier) if $H(x y)=H(x) y($ resp. $H(x y)=x H(y))$ for all $x, y \in \mathcal{N}$. Thereby, if H is both a left multiplier and a right multiplier, then H is called a multiplier of \mathcal{N}. In [15], S. Mouhssine and A. Boua defined a special derivation \tilde{d} on $\mathcal{N} / \mathcal{P}$ by $\tilde{d}(\bar{x})=\overline{d(x)}$ for all $x \in \mathcal{N}$. Motivated by this new map, here we define a left multiplier \tilde{H} on $\mathcal{N} / \mathcal{P}$ as follows: $\tilde{H}(\bar{x})=\overline{H(x)}$ for all $x \in \mathcal{N}$. A normal subgroup \mathcal{P} of $(\mathcal{N},+)$ is called a left ideal (resp. a right ideal) if $\mathcal{P N} \subseteq \mathcal{P}$ (resp. $(x+r) y-x y \in \mathcal{P}$ for all $x, y \in \mathcal{N}, r \in \mathcal{P})$, and if \mathcal{P} is both a left ideal and a right ideal, then \mathcal{P} is said to be an ideal of \mathcal{N}. According to Groenewald [14], an ideal \mathcal{P} is 3-prime if for $a, b \in \mathcal{N}, a \mathcal{N} b \subseteq \mathcal{P}$ implies $a \in \mathcal{P}$ or $b \in \mathcal{P}$. Here we present an example for a near-ring \mathcal{N} which is not a ring and admits a 3 -prime ideal \mathcal{P}.

[^0]Example 1.1. Let $\mathcal{N}=\{0, a, b, c, d, e, f, g\}$ and define the two laws " + " and "." by:

+	0	a	b	c	d	e	f	g
0	0	a	b	c	d	e	f	g
a	a	b	c	0	e	f	g	d
b	b	c	0	a	f	g	d	e
c	c	0	a	b	g	d	e	f
d	d	g	f	e	0	c	b	a
e	e	d	g	f	a	0	c	b
f	f	e	d	g	b	a	0	c
g	g	f	e	d	c	b	a	0

.	0	a	b	c	d	e	f	g
0	0	0	0	0	0	0	0	0
a	0	a	0	a	0	a	a	0
b	0	b	0	b	0	b	b	0
c	0	c	0	c	0	c	c	0
d								
e	d	e	d	e	d	e	e	d
f	d	f	d	f	d	f	f	d
g	d	g	d	g	d	g	g	d

Then, $\mathcal{P}=\{0, a, b, c\}$ is a 3 -prime ideal of the near-ring \mathcal{N}.
During the last decades, many authors have studied the commutativity in prime rings and 3 -prime near-rings admitting several types of additive mappings defined on these sets, namely automorphisms, derivations, generalized derivations, and semiderivations satisfying appropriate algebraic conditions on appropriate subsets of rings or near-rings (see for example, $[1,3,6,15,16]$, etc). Recently, Ashraf et al. [6] proved that if a 3 -prime near-ring \mathcal{N} admits a nonzero derivation d satisfying $d([x, y])-[d(x), y]=0$ for all $x, y \in \mathcal{N}$, then \mathcal{N} is a commutative ring. Also, A. En-guady and A. Boua [13] studied the commutativity of near-rings admitting a left derivation d and a multiplier H satisfying $d([x, u])-H([x, u])=0$ for all $u \in U, x \in \mathcal{N}$, where U is a Lie ideal of \mathcal{N}.

In this work we will extend and generalize several results existing in the literature (see, $[2-6,8-10]$) in different directions by working in quotient nearrings instead of simple near-rings, and also by including other special type of maps.

2. Main results

This section is devoted to the study of the commutativity of a near-ring $\mathcal{N} / \mathcal{P}$ such that \mathcal{N} is a near-ring admitting a derivation d and a left multiplier H satisfying the properties $d([x, y])-H([x, y]) \in \mathcal{P}, d([x, y])-[d(x), y]) \in \mathcal{P}$, $d(x \circ y)-H(x \circ y) \in \mathcal{P}$ for all $x, y \in \mathcal{N}$, where \mathcal{P} is a 3-prime ideal of \mathcal{N}. We begin with some well-known lemmas that are essential for developing the proofs of our main results.

Lemma 2.1. Let \mathcal{N} be a 3 -prime near-ring.
(a) $[7$, Lemmas 1.3(i)] If x is an element of \mathcal{N} such that $\mathcal{N} x=\{0\}$ (resp. $x \mathcal{N}=\{0\})$, then $x=0$.
(b) [7, Lemmas 1.5)] If $\mathcal{N} \subseteq Z(\mathcal{N})$, then \mathcal{N} is a commutative ring.
(c) [7, Theorem 2.1] If \mathcal{N} admits a nonzero derivation d for which $d(\mathcal{N}) \subseteq$ $Z(\mathcal{N})$, then \mathcal{N} is a commutative ring.
(d) [12, Lemma 2] Let d be a derivation on \mathcal{N}. If $x \in Z(\mathcal{N})$, then $d(x) \in$ $Z(\mathcal{N})$.

The following theorem generalizes the results [6, Theorem 1(i)] and [10, Theorem 2.2].
Theorem 2.2. Let \mathcal{P} be a prime ideal of a near-ring \mathcal{N}. If \mathcal{N} admits a derivation d and a left multiplier H for which $d(\mathcal{N}) \nsubseteq \mathcal{P}$ or $H(\mathcal{N}) \nsubseteq \mathcal{P}$, then the following assertions are equivalent:
(i) $d([x, y])-H([x, y]) \in \mathcal{P}$ for all $x, y \in \mathcal{N}$,
(ii) $d([x, y])-[d(x), y] \in \mathcal{P}$ for all $x, y \in \mathcal{N}$,
(iii) $\mathcal{N} / \mathcal{P}$ is a commutative ring.

Proof. It is obvious that $(\mathrm{iii}) \Rightarrow$ (i) and (iii) \Rightarrow (ii). So, we need to prove that (i) \Rightarrow (iii) and (ii) \Rightarrow (iii).
(i) \Rightarrow (iii) By hypotheses given, we have $d([x, y])-H([x, y]) \in \mathcal{P}$ for all $x, y \in$ \mathcal{N}, which implies that

$$
\begin{equation*}
\tilde{d}([\bar{x}, \bar{y}])=\tilde{H}([\bar{x}, \bar{y}]) \text { for all } x, y \in \mathcal{N} . \tag{1}
\end{equation*}
$$

We divide the proof into two cases:
Case 1: Suppose that $H(\mathcal{N}) \subseteq \mathcal{P}$, thereby obtaining $\tilde{d} \neq \overline{0}$ and (1) yields $\tilde{d}([\bar{x}, \bar{y}])=\overline{0}$ for all $x, y \in \mathcal{N}$. Substituting $x y$ for y in the last equation and noting that $[\bar{x}, \bar{x} \bar{y}]=\bar{x}[\bar{x}, \bar{y}]$, we arrive at $\tilde{d}(\bar{x})=\overline{0}$ or $\bar{x} \in Z(\mathcal{N} / \mathcal{P})$ for all $x \in \mathcal{N}$. According to Lemma 2.1(d) and Lemma 2.1(c), we conclude that $\mathcal{N} / \mathcal{P}$ is a commutative ring.
Case 2: Assume that $H(\mathcal{N}) \nsubseteq \mathcal{P}$, in this case replacing \bar{x} by $\bar{y} \bar{x}$ in (1), we find that $\bar{y} \tilde{d}([\bar{x}, \bar{y}])+\tilde{d}(\bar{y})[\bar{x}, \bar{y}]-\tilde{H}(\bar{y})[\bar{x}, \bar{y}]=\overline{0}$ for all $\bar{x}, \bar{y} \in \mathcal{N} / \mathcal{P}$. Now, taking $[\bar{u}, \bar{v}]$ instead of \bar{y} in the last equation and invoking (1), we obtain

$$
\begin{equation*}
[\bar{u}, \bar{v}] \tilde{H}([\bar{x},[\bar{u}, \bar{v}]])=\overline{0} \text { for all } x, u, v \in \mathcal{N} \tag{2}
\end{equation*}
$$

which yields

$$
\begin{equation*}
[\bar{u}, \bar{v}] \tilde{H}(\bar{x})[\bar{u}, \bar{v}]-[\bar{u}, \bar{v}] \tilde{H}([\bar{u}, \bar{v}]) \bar{x}=\overline{0} \text { for all } x, u, v \in \mathcal{N} . \tag{3}
\end{equation*}
$$

Substituting $\bar{y} \bar{t}$ for \bar{x} in (3), we obtain $[\bar{u}, \bar{v}] \tilde{H}(\bar{y}) \bar{t}[\bar{u}, \bar{v}]=[\bar{u}, \bar{v}] \tilde{H}([\bar{u}, \bar{v}]) \bar{y} \bar{t}$ for all $t, u, v, y \in \mathcal{N}$. Again, in view of (3), $[\bar{u}, \bar{v}] \tilde{H}([\bar{u}, \bar{v}]) \bar{y}=[\bar{u}, \bar{v}] \tilde{H}(\bar{y})[\bar{u}, \bar{v}]$. Hence,

$$
[\bar{u}, \bar{v}] \tilde{H}(\bar{y}) \bar{t}[\bar{u}, \bar{v}]=[\bar{u}, \bar{v}] \tilde{H}([\bar{u}, \bar{v}]) \bar{y} \bar{t}=[\bar{u}, \bar{v}] \tilde{H}(\bar{y})[\bar{u}, \bar{v}] \bar{t}
$$

so that $[\bar{u}, \bar{v}] \tilde{H}(\bar{y}) \bar{t}[\bar{u}, \bar{v}]-[\bar{u}, \bar{v}] \tilde{H}(\bar{y})[\bar{u}, \bar{v}] \bar{t}=\overline{0}$ for all $t, u, v, y \in \mathcal{N}$ which gives $[\bar{u}, \bar{v}] \tilde{H}(\bar{y})[\bar{t},[\bar{u}, \bar{v}]]=\overline{0}$ for all $t, u, v, y \in \mathcal{N}$. Putting $y=y z$, we infer that $[\bar{u}, \bar{v}] \tilde{H}(\bar{y}) \bar{z}[\bar{t},[\bar{u}, \bar{v}]]=\overline{0}$ for all $t, u, v, y, z \in \mathcal{N}$. Consequently,

$$
[\bar{u}, \bar{v}] \tilde{H}(\bar{y}) \mathcal{N} / \mathcal{P}[\bar{t},[\bar{u}, \bar{v}]]=\{\overline{0}\} \text { for all } t, u, v, y \in \mathcal{N} .
$$

Since $\mathcal{N} / \mathcal{P}$ is 3 -prime, the above relation yields that

$$
\begin{equation*}
[\bar{u}, \bar{v}] \tilde{H}(\bar{y})=\overline{0} \text { or }[\bar{t},[\bar{u}, \bar{v}]]=\overline{0} \text { for all } t, u, v, y \in \mathcal{N} \tag{4}
\end{equation*}
$$

Suppose there exist two elements $u_{0}, v_{0} \in \mathcal{N}$ such that $\left[\bar{u}_{0}, \bar{v}_{0}\right] \tilde{H}(\bar{y})=\overline{0}$ for all $y \in \mathcal{N}$. In particular, putting $y=[r, t]$ and invoking (1), we get

$$
\begin{equation*}
\left[\bar{u}_{0}, \bar{v}_{0}\right] \tilde{d}([\bar{r}, \bar{t}])=\overline{0} \text { for all } y, r, t \in \mathcal{N} . \tag{5}
\end{equation*}
$$

According to (2) and (1), we have $[\bar{u}, \bar{v}] \tilde{d}([\bar{x},[\bar{u}, \bar{v}]])=\overline{0}$ for all $u, v, x \in \mathcal{N}$, so that

$$
\begin{equation*}
[\bar{u}, \bar{v}] \tilde{d}(\bar{x}[\bar{u}, \bar{v}])=[\bar{u}, \bar{v}] \tilde{d}([\bar{u}, \bar{v}] \bar{x}) \text { for all } u, v, x \in \mathcal{N} . \tag{6}
\end{equation*}
$$

Hence, for all $u, v, x \in \mathcal{N}$ we have $[\bar{u}, \bar{v}] \tilde{d}(\bar{x})[\bar{u}, \bar{v}]+[\bar{u}, \bar{v}] \bar{x} \tilde{d}([\bar{u}, \bar{v}])=[\bar{u}, \bar{v}]^{2} \tilde{d}(\bar{x})+$ $[\bar{u}, \bar{v}] \tilde{d}([\bar{u}, \bar{v}]) \bar{x}$. Replacing x by $[r, t]$ and $[u, v]$ by $\left[u_{0}, v_{0}\right]$ in the previous relation and using (5), we get

$$
\left(\left[\bar{u}_{0}, \bar{v}_{0}\right] \bar{r} \bar{t}-\left[\bar{u}_{0}, \bar{v}_{0}\right] \bar{t} \bar{r}\right) \tilde{d}\left(\left[\bar{u}_{0}, \bar{v}_{0}\right]\right)=\overline{0} \text { for all } r, t \in \mathcal{N} .
$$

For $t=H(y) k$, we obtain

$$
\left[\bar{u}_{0}, \bar{v}_{0}\right] \bar{r} \tilde{H}(\bar{y}) \bar{k} \tilde{d}\left(\left[\bar{u}_{0}, \bar{v}_{0}\right]\right)=\overline{0} \text { for all } k, r, y \in \mathcal{N},
$$

which reduces to

$$
\left[\bar{u}_{0}, \bar{v}_{0}\right] \mathcal{N} / \mathcal{P} \tilde{H}(\bar{y}) \mathcal{N} / \mathcal{P} \tilde{d}\left(\left[\bar{u}_{0}, \bar{v}_{0}\right]\right)=\{\overline{0}\} \text { for all } y \in \mathcal{N} .
$$

By 3 -primeness of \mathcal{P}, the latter relation shows that

$$
\left[\bar{u}_{0}, \bar{v}_{0}\right]=\overline{0} \text { or } \tilde{H}(\bar{y})=\overline{0} \text { or } \tilde{d}\left(\left[\bar{u}_{0}, \bar{v}_{0}\right]\right)=\overline{0} \text { for all } y \in \mathcal{N} .
$$

As $H(\mathcal{N}) \nsubseteq \mathcal{P}$, then $\tilde{H} \neq \overline{0}$ and hence (4) assures that

$$
[\bar{u}, \bar{v}]=\overline{0} \text { or } \tilde{d}([\bar{u}, \bar{v}])=\overline{0} \text { or }[\bar{u}, \bar{v}] \in Z(\mathcal{N} / \mathcal{P}) \text { for all } u, v \in \mathcal{N} .
$$

So that,

$$
\begin{equation*}
\tilde{d}([\bar{u}, \bar{v}])=\overline{0} \text { or }[\bar{u}, \bar{v}] \in Z(\mathcal{N} / \mathcal{P}) \text { for all } u, v \in \mathcal{N} . \tag{7}
\end{equation*}
$$

Letting $\bar{a}=\left[\bar{u}_{0}, \bar{v}_{0}\right] \in Z(\mathcal{N} / \mathcal{P})$ and taking $x=a x$ in (1), we find that $\tilde{d}([\bar{a} \bar{x}, \bar{y}])=\tilde{H}([\bar{a} \bar{x}, \bar{y}])$ for all $x, y \in \mathcal{N}$. By defining d and according to (1), we arrive at $\tilde{d}(\bar{a})[\bar{x}, \bar{y}]=\overline{0}$ for all $x, y \in \mathcal{N}$. Left multiplying by \bar{r}, where $r \in \mathcal{N}$, we get $\tilde{d}(\bar{a}) \bar{r}[\bar{x}, \bar{y}]=\overline{0}$ for all $r, x, y \in \mathcal{N}$ which, in virtue of the 3-primeness of $\mathcal{N} / \mathcal{P}$, implies that

$$
\begin{equation*}
\tilde{d}(\bar{a})=\overline{0} \text { or }[\bar{x}, \bar{y}]=\overline{0} \text { for all } x, y \in \mathcal{N} . \tag{8}
\end{equation*}
$$

If $\tilde{d}(\bar{a}) \neq \overline{0}$, then (8) shows that $\mathcal{N} / \mathcal{P}$ is a commutative ring. Otherwise, according to (7), we find that $\tilde{d}([\bar{u}, \bar{v}])=\overline{0}$ for all $u, v \in \mathcal{N}$, which gives that $\mathcal{N} / \mathcal{P}$ is a commutative ring by [11, Theorem 3.1] (it suffices to see that each derivation is a generalized derivation). Consequently, $\mathcal{N} / \mathcal{P}$ is a commutative ring in both cases.
(ii) \Rightarrow (iii) Suppose that $d([x, y])-[d(x), y] \in \mathcal{P}$ for all $x, y \in \mathcal{N}$. This implies that

$$
\begin{equation*}
\tilde{d}([\bar{x}, \bar{y}])=[\tilde{d}(\bar{x}), \bar{y}] \text { for all } x, y \in \mathcal{N} . \tag{9}
\end{equation*}
$$

Replacing y by $x y$ in (9), we get $\tilde{d}([\bar{x}, \bar{x} \bar{y}])=[\tilde{d}(\bar{x}), \bar{x} \bar{y}]$ for all $x, y \in \mathcal{N}$ which implies that $\bar{x} \tilde{d}([\bar{x}, \bar{y}])+\tilde{d}(\bar{x})[\bar{x}, \bar{y}]=[\tilde{d}(\bar{x}), \bar{x} \bar{y}]$ for all $x, y \in \mathcal{N}$. Combining this result with (9), we obtain

$$
\bar{x}[\tilde{d}(\bar{x}), \bar{y}]+\tilde{d}(\bar{x})[\bar{x}, \bar{y}]=[\tilde{d}(\bar{x}), \bar{x} \bar{y}] \text { for all } x, y \in \mathcal{N} .
$$

This implies that, for all $x, y \in \mathcal{N}$, we have

$$
\begin{equation*}
\bar{x} \tilde{d}(\bar{x}) \bar{y}-\bar{x} \bar{y} \tilde{d}(\bar{x})+\tilde{d}(\bar{x})[\bar{x}, \bar{y}]=\tilde{d}(\bar{x}) \bar{x} \bar{y}-\bar{x} \bar{y} \tilde{d}(\bar{x}) \tag{10}
\end{equation*}
$$

On the other hand, replacing y by x in (9), we arrive at

$$
\begin{equation*}
\tilde{d}(\bar{x}) \bar{x}=\bar{x} \tilde{d}(\bar{x}) \text { for all } x \in \mathcal{N} \tag{11}
\end{equation*}
$$

Using (11) and (10), and after simplification we infer that

$$
\tilde{d}(\bar{x}) \bar{x} \bar{y}=\tilde{d}(\bar{x}) \bar{y} \bar{x} \text { for all } x, y \in \mathcal{N} .
$$

Putting $y z$ instead of y in the latter relation and using it again, we get

$$
\begin{equation*}
\tilde{d}(\bar{x}) \mathcal{N} / \mathcal{P}[\bar{x}, \bar{z}]=\{\overline{0}\} \text { for all } x, z \in \mathcal{N} \tag{12}
\end{equation*}
$$

In the light of the 3 -primeness of \mathcal{P}, (12) gives

$$
\tilde{d}(\bar{x})=\overline{0} \text { or }[\bar{x}, \bar{z}]=\overline{0} \text { for all } x, z \in \mathcal{N}
$$

which may be rewritten as

$$
\tilde{d}(\bar{x})=\overline{0} \text { or } \bar{x} \in Z(\mathcal{N} / \mathcal{P}) \text { for all } x \in \mathcal{N}
$$

which forces that $\tilde{d}(\bar{x}) \in Z(\mathcal{N} / \mathcal{P})$ for all $x \in \mathcal{N}$ by Lemma $2.1(\mathrm{~d})$ and thus $\mathcal{N} / \mathcal{P}$ is a commutative ring by Lemma 2.1(c).

The next theorem generalizes the result [10, Theorem 2.4].
Theorem 2.3. Let \mathcal{N} be a 2-torsion near-ring and \mathcal{P} be a prime ideal of \mathcal{N}. If \mathcal{N} admits a derivation d and a left multiplier H, for which $d(\mathcal{N}) \nsubseteq \mathcal{P}$ or $H(\mathcal{N}) \nsubseteq \mathcal{P}$, satisfying $d(x \circ y)-H(x \circ y) \in \mathcal{P}$ for all $x, y \in \mathcal{N}$, then $\mathcal{N} / \mathcal{P}$ is a commutative ring with characteristic 2 .

Proof. By hypotheses given, we have

$$
\begin{equation*}
\tilde{d}(\bar{x} \circ \bar{y})-\tilde{H}(\bar{x} \circ \bar{y})=\overline{0} \text { for all } x, y \in \mathcal{N} . \tag{13}
\end{equation*}
$$

- Firstly, we discuss the case when $H(\mathcal{N}) \subseteq \mathcal{P}$. In this case, (13) becomes in the form $\tilde{d}(\bar{x} \circ \bar{y})=\overline{0}$ for all $x, y \in \mathcal{N}$. Using the same arguments as those used in the proof of [17, Theorem 3.5], and taking into account the fact that d is a derivation, we arrive to the conclusion $\tilde{d}(\bar{x}) \in Z(\mathcal{N} / \mathcal{P})$ for all $x \in \mathcal{N}$ which implies that $\mathcal{N} / \mathcal{P}$ is a commutative ring by Lemma 2.1(c). Accordingly, for all $x, y, t \in \mathcal{N}$, we have

$$
\begin{aligned}
\tilde{d}(\bar{x} \circ \bar{y} \bar{t}) & =\overline{0} \\
& =\tilde{d}(\bar{x}(\bar{y} \bar{t}+\bar{y} \bar{t})) \\
& =\tilde{d}(\bar{x})(\bar{y} \bar{t}+\bar{y} \bar{t})+\bar{x} \tilde{d}(\bar{y} \circ \bar{t})=\tilde{d}(\bar{x}) \bar{y}(\bar{t}+\bar{t})
\end{aligned}
$$

In view of $\tilde{d} \neq \overline{0}$ and $\mathcal{N} / \mathcal{P}$ is 3 -prime, the last result shows that $2 \bar{t}=\overline{0}$ for all $t \in \mathcal{N}$, and hence N / P is a commutative ring of characteristic equal 2 .

- Secondly, suppose that $H(\mathcal{N}) \nsubseteq \mathcal{P}$. Replacing y by $x y$ in (13), we obtain $\tilde{d}(\bar{x}(\bar{x} \circ \bar{y}))-\tilde{H}(\bar{x}(\bar{x} \circ \bar{y}))=\overline{0}$ for all $x, y \in \mathcal{N}$. Again, substituting $u \circ v$ for x
in the last equation and applying (13), we arrive at $(\bar{u} \circ \bar{v}) \tilde{H}((\bar{u} \circ \bar{v}) \circ \bar{y})=\overline{0}$ for all $u, v, y \in \mathcal{N}$. So that

$$
(\bar{u} \circ \bar{v}) \tilde{H}(\bar{u} \circ \bar{v}) \bar{y}=-(\bar{u} \circ \bar{v}) \tilde{H}(\bar{y})(\bar{u} \circ \bar{v}) \text { for all } u, v, y \in \mathcal{N} .
$$

Now, taking $y t$ instead of y, where $t \in \mathcal{N}$, in the latter expression and using it again, we infer that

$$
(-(\bar{u} \circ \bar{v}) \tilde{H}(\bar{y})(\bar{u} \circ \bar{v})) \bar{t}=-(\bar{u} \circ \bar{v}) \tilde{H}(\bar{y}) \bar{t}(\bar{u} \circ \bar{v}) \text { for all } u, v, y, t \in \mathcal{N} .
$$

It follows that, $(\bar{u} \circ \bar{v}) \tilde{H}(\bar{y})(-(\bar{u} \circ \bar{v})) \bar{t}=(\bar{u} \circ \bar{v}) \tilde{H}(\bar{y}) \bar{t}(-(\bar{u} \circ \bar{v}))$ for all $u, v, y, t \in$ \mathcal{N} in such a way that $(\bar{u} \circ \bar{v}) \tilde{H}(\bar{y})[-(\bar{u} \circ \bar{v}), \bar{t}]=\overline{0}$ for all $u, v, y, t \in \mathcal{N}$. Now, taking $y=y r$ the previous expression shows that $(\bar{u} \circ \bar{v}) \tilde{H}(\bar{y}) \mathcal{N} / \mathcal{P}[-(\bar{u} \circ \bar{v}), \bar{t}]=$ $\{\overline{0}\}$ for all $u, v, y, t \in \mathcal{N}$. In view of the 3 -primeness of $\mathcal{N} / \mathcal{P}$, we find that

$$
\begin{equation*}
(\bar{u} \circ \bar{v}) \tilde{H}(\bar{y})=\overline{0} \text { or }-(\bar{u} \circ \bar{v}) \in Z(\mathcal{N} / \mathcal{P}) \text { for all } u, v \in \mathcal{N} . \tag{14}
\end{equation*}
$$

If there are two elements $u_{0}, v_{0} \in \mathcal{N}$ such that

$$
\begin{equation*}
\left(\bar{u}_{0} \circ \bar{v}_{0}\right) \tilde{H}(\bar{y})=\overline{0} \text { for all } y \in \mathcal{N} . \tag{15}
\end{equation*}
$$

Replacing y by $\left(u_{0} \circ v_{0}\right) \circ y$ in (15) and using (13), we get $\left(\bar{u}_{0} \circ \bar{v}_{0}\right) \tilde{d}\left(\left(\bar{u}_{0} \circ \bar{v}_{0}\right) \circ \bar{y}\right)=$ $\overline{0}$ for all $y \in \mathcal{N}$, means that $\left(\bar{u}_{0} \circ \bar{v}_{0}\right) \tilde{d}\left(\left(\bar{u}_{0} \circ \bar{v}_{0}\right) \bar{y}\right)=-\left(\bar{u}_{0} \circ \bar{v}_{0}\right) \tilde{d}\left(\bar{y}\left(\bar{u}_{0} \circ \bar{v}_{0}\right)\right)$ for all $\bar{y} \in \mathcal{N}$. By property defining of d, we obtain $\left(\bar{u}_{0} \circ \bar{v}_{0}\right) \tilde{d}\left(\bar{u}_{0} \circ \bar{v}_{0}\right) \bar{y}+\left(\bar{u}_{0} \circ \bar{v}_{0}\right)^{2} \tilde{d}(\bar{y})=$ $-\left(\bar{u}_{0} \circ \bar{v}_{0}\right) \tilde{d}(\bar{y})\left(\bar{u}_{0} \circ \bar{v}_{0}\right)-\left(\bar{u}_{0} \circ \bar{v}_{0}\right) \bar{y} \tilde{d}\left(\bar{u}_{0} \circ \bar{v}_{0}\right)$ for all $y \in \mathcal{N}$. Taking $r \circ s$ in the place of y, where $r, s \in \mathcal{N}$, we get

$$
\begin{aligned}
& \left(\bar{u}_{0} \circ \bar{v}_{0}\right) \tilde{d}\left(\bar{u}_{0} \circ \bar{v}_{0}\right)(\bar{r} \circ \bar{s})+\left(\bar{u}_{0} \circ \bar{v}_{0}\right)^{2} \tilde{d}(\bar{r} \circ \bar{s}) \\
= & -\left(\bar{u}_{0} \circ \bar{v}_{0}\right) \tilde{d}(\bar{r} \circ \bar{s})\left(\bar{u}_{0} \circ \bar{v}_{0}\right)-\left(\bar{u}_{0} \circ \bar{v}_{0}\right)(\bar{r} \circ \bar{s}) \tilde{d}\left(\bar{u}_{0} \circ \bar{v}_{0}\right) .
\end{aligned}
$$

According to (13) and (15), the preceding relation gives

$$
\left(\bar{u}_{0} \circ \bar{v}_{0}\right)(\bar{r} \circ \bar{s}) \tilde{d}\left(\bar{u}_{0} \circ \bar{v}_{0}\right)=\overline{0} \text { for all } r, s \in \mathcal{N}
$$

in other words,

$$
\left(\left(\bar{u}_{0} \circ \bar{v}_{0}\right) \bar{r} \bar{s}+\left(\bar{u}_{0} \circ \bar{v}_{0}\right) \bar{s} \bar{r}\right) \tilde{d}\left(\bar{u}_{0} \circ \bar{v}_{0}\right)=\overline{0} \text { for all } r, s \in \mathcal{N} .
$$

Now, taking $r=H(y)$ and invoking (15), we obtain

$$
\left(\bar{u}_{0} \circ \bar{v}_{0}\right) \bar{s} \tilde{H}(\bar{y}) \tilde{d}\left(\bar{u}_{0} \circ \bar{v}_{0}\right)=\overline{0} \text { for all } y, s \in \mathcal{N}
$$

which reduces to $\left(\bar{u}_{0} \circ \bar{v}_{0}\right) \mathcal{N} / \mathcal{P} \tilde{H}(\bar{y}) \tilde{d}\left(\bar{u}_{0} \circ \bar{v}_{0}\right)=\{\overline{0}\}$ for all $y \in \mathcal{N}$. Since $\mathcal{N} / \mathcal{P}$ is 3 -prime, we conclude that

$$
\bar{u}_{0} \circ \bar{v}_{0}=\overline{0} \text { or } \tilde{H}(\bar{y}) \tilde{d}\left(\bar{u}_{0} \circ \bar{v}_{0}\right)=\overline{0} \text { for all } y \in \mathcal{N} .
$$

Putting $y t$ instead of y, where $t \in \mathcal{N}$, in the last equation and using the 3primeness of $\mathcal{N} / \mathcal{P}$, we find that

$$
\bar{u}_{0} \circ \bar{v}_{0}=\overline{0} \text { or } \tilde{H}(\bar{y})=\overline{0} \text { or } \tilde{d}\left(\bar{u}_{0} \circ \bar{v}_{0}\right)=\overline{0} \text { for all } y \in \mathcal{N} .
$$

Since $H \neq 0$, (14) reduces to

$$
\begin{equation*}
\tilde{d}(\bar{u} \circ \bar{v})=\overline{0} \text { or }-(\bar{u} \circ \bar{v}) \in Z(\mathcal{N} / \mathcal{P}) \text { for all } u, v \in \mathcal{N} . \tag{16}
\end{equation*}
$$

Suppose there exist two elements $u_{0}, v_{0} \in \mathcal{N}$ such that $-\left(\bar{u}_{0} \circ \bar{v}_{0}\right) \in Z(\mathcal{N} / \mathcal{P})$, in view of Lemma 2.1(d) we have $\tilde{d}\left(-\left(\bar{u}_{0} \circ \bar{v}_{0}\right)\right) \in Z(\mathcal{N} / \mathcal{P})$. To simplify the notation, let's set $\bar{k}=-\left(\bar{u}_{0} \circ \bar{v}_{0}\right)$; returning to the equation (13) and replacing x by $k x$, we obtain

$$
\tilde{d}(\bar{k}(\bar{x} \circ \bar{y}))=\tilde{H}(\bar{k}(\bar{x} \circ \bar{y})) \text { for all } x, y \in \mathcal{N} .
$$

Using the definition of d and the property $\bar{k} \in Z(\mathcal{N} / \mathcal{P})$, we get $\tilde{d}(\bar{x} \circ \bar{y}) \bar{k}+$ $\tilde{d}(\bar{k})(\bar{x} \circ \bar{y})=\tilde{H}(\bar{x} \circ \bar{y}) \bar{k}$ for all $x, y \in \mathcal{N}$ which implies that $\tilde{d}(\bar{k})(\bar{x} \circ \bar{y})=\overline{0}$ for all $x, y \in \mathcal{N}$. Left multiplying the latter relation by \bar{r}, where $r \in \mathcal{N}$, and in view of $\tilde{d}(\bar{k}) \in Z(\mathcal{N} / \mathcal{P})$, we conclude that

$$
\begin{equation*}
\tilde{d}(\bar{k}) \mathcal{N} / \mathcal{P}(\bar{x} \circ \bar{y})=\{\overline{0}\} \text { for all } x, y \in \mathcal{N} \tag{17}
\end{equation*}
$$

and hence by 3 -primeness of $\mathcal{N} / \mathcal{P}$ we obtain $\tilde{d}(\bar{k})=\overline{0}$ or $\bar{x} \circ \bar{y}=\overline{0}$ for all $x, y \in \mathcal{N}$. If the first condition is not verified, clearly the second condition implies that $\bar{x} \bar{y}=-\bar{y} \bar{x}$ for all $x, y \in \mathcal{N}$. Replacing y by $y t$, where $t \in \mathcal{N}$, we obtain $\bar{x} \bar{y} \bar{t}=\bar{y}(-\bar{x}) \bar{t}=\bar{y} \bar{t}(-\bar{x})$ which means that $\bar{y}[\bar{t},-\bar{x}]=\overline{0}$ for all $x, y, t \in \mathcal{N}$. It follows that $[\bar{t},-\bar{x}] \bar{y}[\bar{t},-\bar{x}]=0$ and hence $[\bar{t},-\bar{x}] \mathcal{N} / \mathcal{P}[\bar{t},-\bar{x}]=\{\overline{0}\}$ for all $t, x \in \mathcal{N}$. In view of the 3 -primeness of $\mathcal{N} / \mathcal{P}$, the last result shows that $\mathcal{N} / \mathcal{P}$ is a commutative ring. So, our condition that $\bar{x} \circ \bar{y}=\overline{0}$ yields $\bar{x}(\bar{y}+\bar{y})=\overline{0}$ for all $x, y \in \mathcal{N}$. Substituting $x r$ for x in the last result and in view of the 3 primeness of $\mathcal{N} / \mathcal{P}$ we conclude that $\mathcal{N} / \mathcal{P}$ is of characteristic 2 . Now, suppose that $\tilde{d}(\bar{k})=\overline{0}$ for all $k=-(\bar{u} \circ \bar{v}) \in Z(\mathcal{N} / \mathcal{P})$, then (16) yields $\tilde{d}(\bar{u} \circ \bar{v})=\overline{0}$ for all $u, v \in \mathcal{N}$, and therefore in virtue of (13) we find that

$$
\begin{equation*}
\tilde{H}(\bar{u} \circ \bar{v})=\overline{0} \text { for all } u, v \in \mathcal{N} \tag{18}
\end{equation*}
$$

Replacing v by $u v$ in (18), we get $\tilde{H}(\bar{u})(\bar{u} \circ \bar{v})=\overline{0}$ which means that $\tilde{H}(\bar{u}) \bar{u} \bar{v}=$ $-\tilde{H}(\bar{u}) \bar{v} \bar{u}$ for all $u, v \in \mathcal{N}$. Once again, taking $v t$ instead of v, where $t \in \mathcal{N}$, in the last equation and using it, we arrive at

$$
\begin{equation*}
\tilde{H}(\bar{u})=\overline{0} \text { or } \bar{u} \in Z(\mathcal{N} / \mathcal{P}) \text { for all } u \in \mathcal{N} . \tag{19}
\end{equation*}
$$

Let u_{0} be an arbitrary element of \mathcal{N} such that $\tilde{H}\left(\bar{u}_{0}\right)=\overline{0}$, according to (18) and additivity of H we have

$$
\begin{aligned}
\overline{0} & =\tilde{H}\left(\bar{u}_{0} \circ \bar{v} \bar{k}\right) \\
& =\tilde{H}\left(\bar{u}_{0}\right) \bar{v} \bar{k}+\tilde{H}(\bar{v} \bar{k}) \bar{u}_{0} \\
& =\tilde{H}(\bar{v}) \bar{k} \bar{u}_{0} \text { for all } v, k \in \mathcal{N} .
\end{aligned}
$$

Using the 3-primeness of $\mathcal{N} / \mathcal{P}$ together $\tilde{H} \neq \overline{0}$, we can conclude that $\bar{u}_{0}=\overline{0}$ therefore, from (19) and Lemma 2.1(b), we conclude that $\mathcal{N} / \mathcal{P}$ is a commutative ring. Now, returning to (18), we can see that $\tilde{H}(\bar{u} \bar{t} \circ \bar{v})=\tilde{H}(\bar{u}) \bar{t}(\bar{v}+\bar{v})=\overline{0}$ for all $u, v, t \in \mathcal{N}$. Consequently, $\mathcal{N} / \mathcal{P}$ is of characteristic 2 which completes the proof.

The following example shows that the 3 -primeness of \mathcal{P} that we used in our results cannot be omitted.

Example 2.4. Consider \mathcal{M} be an any left near-ring and let us define $\mathcal{N}, \mathcal{P}, d, H$ by:

$$
\begin{gathered}
\mathcal{N}=\left\{\left.\left(\begin{array}{lll}
0 & r & s \\
0 & 0 & 0 \\
0 & t & 0
\end{array}\right) \right\rvert\, 0, r, s, t \in \mathcal{M}\right\}, \mathcal{P}=\left\{\left.\left(\begin{array}{lll}
0 & r & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \right\rvert\, 0, r \in \mathcal{M}\right\}, \\
d\left(\begin{array}{lll}
0 & r & s \\
0 & 0 & 0 \\
0 & t & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & s & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \text { and } H\left(\begin{array}{lll}
0 & r & s \\
0 & 0 & 0 \\
0 & t & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & t & 0
\end{array}\right) .
\end{gathered}
$$

We can see that \mathcal{P} is an ideal of the near-ring \mathcal{N} which is not 3 -prime, d is a derivation of \mathcal{N} and H is a left multiplier of \mathcal{N} which satisfies all identities of our theorems. Furthermore, $\mathcal{N} / \mathcal{P}$ is also a noncommutative ring.

Acknowledgments. The authors thank the reviewer for valuable suggestions and comments.

References

[1] A. Abbasi, A. N. Khan, and M. S. Khan, Actions of generalized derivations on prime ideals in *-rings with applications, Hacet. J. Math. Stat. 52 (2023), no. 5, 1219-1228.
[2] M. Ashraf and S. Ali, On (σ, τ)-derivations of prime near-rings. II, Sarajevo J. Math. 4(16) (2008), no. 1, 23-30.
[3] M. Ashraf and S. Ali, On left multipliers and the commutativity of prime rings, Demonstratio Math. 41 (2008), no. 4, 763-771.
[4] M. Ashraf, A. Ali, and S. Ali, (σ, τ)-derivations on prime near rings, Arch. Math. (Brno) 40 (2004), no. 3, 281-286.
[5] M. Ashraf and A. Boua, On semiderivations in 3-prime near-rings, Commun. Korean Math. Soc. 31 (2016), no. 3, 433-445. https://doi.org/10.4134/CKMS.c150155
[6] M. Ashraf, A. Boua, and A. Raji, On derivations and commutativity in prime nearrings, J. Taibah University for Science 8 (2014), no. 3, 301-306.
[7] H. E. Bell, On derivations in near-rings. II, in Nearrings, nearfields and K-loops (Hamburg, 1995), 191-197, Math. Appl., 426, Kluwer Acad. Publ., Dordrecht, 1997.
[8] H. E. Bell, A. Boua, and L. Oukhtite, On derivations of prime near-rings, Afr. Diaspora J. Math. 14 (2012), no. 1, 65-72.
[9] A. Boua, Commutativity of Jordan ideals in 3-prime near-rings with derivations, Commun. Korean Math. Soc. 33 (2018), no. 1, 37-44. https://doi.org/10.4134/CKMS. c170015
[10] A. Boua and L. Oukhtite, Derivations on prime near-rings, Int. J. Open Probl. Comput. Sci. Math. 4 (2011), no. 2, 162-167.
[11] A. Boua, L. Oukhtite, and A. Raji, On 3-prime near-rings with generalized derivations, Palest. J. Math. 5 (2015), no. 1, 12-16.
[12] M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Internat. J. Math. Math. Sci. 15 (1992), no. 1, 205-206. https://doi.org/10.1155/ S0161171292000255
[13] A. En-guady and A. Boua, On Lie ideals with left derivations in 3-prime near-rings, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 68 (2022), no. 1, 123-132.
[14] N. J. Groenewald, Different prime ideals in near-rings, Comm. Algebra 19 (1991), no. 10, 2667-2675. https://doi.org/10.1080/00927879108824287
[15] S. Mouhssine and A. Boua, (α, τ) - P-derivations on left near-rings, Note Mat. 42 (2022), no. 2, 93-107.
[16] A. Raji, Some commutativity criteria for 3-prime near-rings, Algebra Discrete Math. 32 (2021), no. 2, 280-298.
[17] M. Samman, L. Oukhtite, A. Raji, and A. Boua, Two sided α-derivations in 3-prime near-rings, Rocky Mountain J. Math. 46 (2016), no. 4, 1379-1393. https://doi.org/ 10.1216/RMJ-2016-46-4-1379

Abdelkarim Boua
Department of Mathematics
Polydisciplinary Faculty, LSI, Taza
Sidi Mohammed Ben Abdellah University
Fez, Morocco
Email address: abdelkarimboua@yahoo.fr
Abderrahmane Raji
LMACS Laboratory
Faculty of Sciences and Technology
Sultan Moulay Slimane University
Beni Mellal, Morocco
Email address: rajiabd2@gmail.com
Abdelilah Zerbane
Department of Mathematics
Polydisciplinary Faculty, LSI, Taza
Sidi Mohammed Ben Abdellah University
Fez, Morocco
Email address: abdelilah.zerbane@usmba.ac.ma

[^0]: Received September 8, 2023; Accepted January 25, 2024.
 2020 Mathematics Subject Classification. Primary 16N60; Secondary 16W25, 16 Y30.
 Key words and phrases. Prime near-rings, derivations, left multipliers, commutativity.

