Commun. Korean Math. Soc. **39** (2024), No. 2, pp. 353–361 https://doi.org/10.4134/CKMS.c230233 pISSN: 1225-1763 / eISSN: 2234-3024

STUDY OF QUOTIENT NEAR-RINGS WITH ADDITIVE MAPS

ABDELKARIM BOUA, ABDERRAHMANE RAJI, AND ABDELILAH ZERBANE

ABSTRACT. We consider \mathcal{N} to be a 3-prime field and \mathcal{P} to be a prime ideal of \mathcal{N} . In this paper, we study the commutativity of the quotient near-ring \mathcal{N}/\mathcal{P} with left multipliers and derivations satisfying certain identities on P, generalizing some well-known results in the literature. Furthermore, an example is given to illustrate the necessity of our hypotheses.

1. Introduction

Throughout this paper, a left near-ring \mathcal{N} is a triple $(\mathcal{N}, +, .)$ with two binary operations "+" and "." such that (i) $(\mathcal{N}, +)$ is a group (not necessarily abelian), (ii) $(\mathcal{N}, .)$ is a semigroup, (iii) c.(a+b) = c.a + c.b for all $a, b, c \in$ \mathcal{N} . The multiplicative center of \mathcal{N} named as $Z(\mathcal{N}), \mathcal{N}/\mathcal{P}$ is a quotient nearring with the multiplicative center $Z(\mathcal{N}/\mathcal{P})$, where \mathcal{P} is a 3-prime ideal of \mathcal{N} . Usually, \mathcal{N} will be 3-prime, that is, will have the property that $x\mathcal{N}y = \{0\}$ for $x, y \in \mathcal{N}$ implies x = 0 or y = 0; and \mathcal{N} is called 2-torsion free if \mathcal{N} has no element of order 2. For any pair $x, y \in \mathcal{N}$, we write [x, y] = xy - yx and $(x \circ y) = xy + yx$ to denote the commutator and anticommutator, respectively. A derivation on \mathcal{N} is an additive endomorphism d of \mathcal{N} such that d(xy) =xd(y) + d(x)y for all $x, y \in \mathcal{N}$. An additive mapping $H: \mathcal{N} \to \mathcal{N}$ is said to be a left multiplier (resp. right multiplier) if H(xy) = H(x)y (resp. H(xy) = xH(y)) for all $x, y \in \mathcal{N}$. Thereby, if H is both a left multiplier and a right multiplier, then H is called a multiplier of \mathcal{N} . In [15], S. Mouhssine and A. Boua defined a special derivation \hat{d} on \mathcal{N}/\mathcal{P} by $\hat{d}(\bar{x}) = d(x)$ for all $x \in \mathcal{N}$. Motivated by this new map, here we define a left multiplier \tilde{H} on \mathcal{N}/\mathcal{P} as follows: $\tilde{H}(\bar{x}) = \overline{H(x)}$ for all $x \in \mathcal{N}$. A normal subgroup \mathcal{P} of $(\mathcal{N}, +)$ is called a left ideal (resp. a right ideal) if $\mathcal{PN} \subseteq \mathcal{P}$ (resp. $(x+r)y - xy \in \mathcal{P}$ for all $x, y \in \mathcal{N}, r \in \mathcal{P}$), and if \mathcal{P} is both a left ideal and a right ideal, then \mathcal{P} is said to be an ideal of \mathcal{N} . According to Groenewald [14], an ideal \mathcal{P} is 3-prime if for $a, b \in \mathcal{N}, a\mathcal{N}b \subseteq \mathcal{P}$ implies $a \in \mathcal{P}$ or $b \in \mathcal{P}$. Here we present an example for a near-ring \mathcal{N} which is not a ring and admits a 3-prime ideal \mathcal{P} .

©2024 Korean Mathematical Society

Received September 8, 2023; Accepted January 25, 2024.

²⁰²⁰ Mathematics Subject Classification. Primary 16N60; Secondary 16W25, 16Y30.

Key words and phrases. Prime near-rings, derivations, left multipliers, commutativity.

Example 1.1. Let $\mathcal{N} = \{0, a, b, c, d, e, f, g\}$ and define the two laws "+" and "." by:

+	0	a	b	c	d	e	f	g		•	0	a	b	c	d	e	f	g
0	0	a	b	С	d	e	f	g		0	0	0	0	0	0	0	0	0
a	a	b	c	0	e	f	g	d		a	0	a	0	a	0	a	a	0
b	b	c	0	a	f	g	d	e		b	0	b	0	b	0	b	b	0
c	c	0	a	b	g	d	e	f	and	c	0	c	0	c	0	c	c	0
d	d	g	f	e	0	c	b	a		d	d	d	d	d	d	d	d	d
e	e	d	g	f	a	0	c	b		e	d	e	d	e	d	e	e	d
f	f	e	d	g	b	a	0	c		f	d	f	d	f	d	f	f	d
g	g	f	e	d	c	b	a	0		g	d	g	d	g	d	g	g	d

Then, $\mathcal{P} = \{0, a, b, c\}$ is a 3-prime ideal of the near-ring \mathcal{N} .

During the last decades, many authors have studied the commutativity in prime rings and 3-prime near-rings admitting several types of additive mappings defined on these sets, namely automorphisms, derivations, generalized derivations, and semiderivations satisfying appropriate algebraic conditions on appropriate subsets of rings or near-rings (see for example, [1,3,6,15,16], etc). Recently, Ashraf et al. [6] proved that if a 3-prime near-ring \mathcal{N} admits a nonzero derivation d satisfying d([x,y]) - [d(x),y] = 0 for all $x, y \in \mathcal{N}$, then \mathcal{N} is a commutative ring. Also, A. En-guady and A. Boua [13] studied the commutativity of near-rings admitting a left derivation d and a multiplier H satisfying d([x,u]) - H([x,u]) = 0 for all $u \in U, x \in \mathcal{N}$, where U is a Lie ideal of \mathcal{N} .

In this work we will extend and generalize several results existing in the literature (see, [2–6, 8–10]) in different directions by working in quotient near-rings instead of simple near-rings, and also by including other special type of maps.

2. Main results

This section is devoted to the study of the commutativity of a near-ring \mathcal{N}/\mathcal{P} such that \mathcal{N} is a near-ring admitting a derivation d and a left multiplier H satisfying the properties $d([x, y]) - H([x, y]) \in \mathcal{P}$, $d([x, y]) - [d(x), y]) \in \mathcal{P}$, $d(x \circ y) - H(x \circ y) \in \mathcal{P}$ for all $x, y \in \mathcal{N}$, where \mathcal{P} is a 3-prime ideal of \mathcal{N} . We begin with some well-known lemmas that are essential for developing the proofs of our main results.

Lemma 2.1. Let \mathcal{N} be a 3-prime near-ring.

- (a) [7, Lemmas 1.3(i)] If x is an element of \mathcal{N} such that $\mathcal{N}x = \{0\}$ (resp. $x\mathcal{N} = \{0\}$), then x = 0.
- (b) [7, Lemmas 1.5)] If $\mathcal{N} \subseteq Z(\mathcal{N})$, then \mathcal{N} is a commutative ring.
- (c) [7, Theorem 2.1] If \mathcal{N} admits a nonzero derivation d for which $d(\mathcal{N}) \subseteq Z(\mathcal{N})$, then \mathcal{N} is a commutative ring.
- (d) [12, Lemma 2] Let d be a derivation on \mathcal{N} . If $x \in Z(\mathcal{N})$, then $d(x) \in Z(\mathcal{N})$.

The following theorem generalizes the results [6, Theorem 1(i)] and [10, Theorem 2.2].

Theorem 2.2. Let \mathcal{P} be a prime ideal of a near-ring \mathcal{N} . If \mathcal{N} admits a derivation d and a left multiplier H for which $d(\mathcal{N}) \notin \mathcal{P}$ or $H(\mathcal{N}) \notin \mathcal{P}$, then the following assertions are equivalent:

- (i) $d([x,y]) H([x,y]) \in \mathcal{P} \text{ for all } x, y \in \mathcal{N},$
- (ii) $d([x,y]) [d(x),y] \in \mathcal{P} \text{ for all } x, y \in \mathcal{N},$
- (iii) \mathcal{N}/\mathcal{P} is a commutative ring.

Proof. It is obvious that $(iii) \Rightarrow (i)$ and $(iii) \Rightarrow (ii)$. So, we need to prove that $(i) \Rightarrow (iii)$ and $(ii) \Rightarrow (iii)$.

(i) \Rightarrow (iii) By hypotheses given, we have $d([x, y]) - H([x, y]) \in \mathcal{P}$ for all $x, y \in \mathcal{N}$, which implies that

(1)
$$\widehat{d}([\bar{x},\bar{y}]) = \widetilde{H}([\bar{x},\bar{y}]) \text{ for all } x, y \in \mathcal{N}.$$

We divide the proof into two cases:

Case 1: Suppose that $H(\mathcal{N}) \subseteq \mathcal{P}$, thereby obtaining $\tilde{d} \neq \bar{0}$ and (1) yields $\tilde{d}([\bar{x},\bar{y}]) = \bar{0}$ for all $x, y \in \mathcal{N}$. Substituting xy for y in the last equation and noting that $[\bar{x},\bar{x}\bar{y}] = \bar{x}[\bar{x},\bar{y}]$, we arrive at $\tilde{d}(\bar{x}) = \bar{0}$ or $\bar{x} \in Z(\mathcal{N}/\mathcal{P})$ for all $x \in \mathcal{N}$. According to Lemma 2.1(d) and Lemma 2.1(c), we conclude that \mathcal{N}/\mathcal{P} is a commutative ring.

Case 2: Assume that $H(\mathcal{N}) \nsubseteq \mathcal{P}$, in this case replacing \bar{x} by $\bar{y}\bar{x}$ in (1), we find that $\bar{y}\tilde{d}([\bar{x},\bar{y}]) + \tilde{d}(\bar{y})[\bar{x},\bar{y}] - \tilde{H}(\bar{y})[\bar{x},\bar{y}] = \bar{0}$ for all $\bar{x},\bar{y} \in \mathcal{N}/\mathcal{P}$. Now, taking $[\bar{u},\bar{v}]$ instead of \bar{y} in the last equation and invoking (1), we obtain

(2)
$$[\bar{u}, \bar{v}] \hat{H}([\bar{x}, [\bar{u}, \bar{v}]]) = \bar{0} \text{ for all } x, u, v \in \mathcal{N}$$

which yields

(3)
$$[\bar{u},\bar{v}]\tilde{H}(\bar{x})[\bar{u},\bar{v}] - [\bar{u},\bar{v}]\tilde{H}([\bar{u},\bar{v}])\bar{x} = \bar{0} \text{ for all } x, u, v \in \mathcal{N}.$$

Substituting $\bar{y}\bar{t}$ for \bar{x} in (3), we obtain $[\bar{u}, \bar{v}]\tilde{H}(\bar{y})\bar{t}[\bar{u}, \bar{v}] = [\bar{u}, \bar{v}]\tilde{H}([\bar{u}, \bar{v}])\bar{y}\bar{t}$ for all $t, u, v, y \in \mathcal{N}$. Again, in view of (3), $[\bar{u}, \bar{v}]\tilde{H}([\bar{u}, \bar{v}])\bar{y} = [\bar{u}, \bar{v}]\tilde{H}(\bar{y})[\bar{u}, \bar{v}]$. Hence,

$$[\bar{u},\bar{v}]\tilde{H}(\bar{y})\bar{t}[\bar{u},\bar{v}] = [\bar{u},\bar{v}]\tilde{H}([\bar{u},\bar{v}])\bar{y}\bar{t} = [\bar{u},\bar{v}]\tilde{H}(\bar{y})[\bar{u},\bar{v}]\bar{t}$$

so that $[\bar{u}, \bar{v}] \hat{H}(\bar{y}) \bar{t}[\bar{u}, \bar{v}] - [\bar{u}, \bar{v}] \hat{H}(\bar{y}) [\bar{u}, \bar{v}] \bar{t} = \bar{0}$ for all $t, u, v, y \in \mathcal{N}$ which gives $[\bar{u}, \bar{v}] \tilde{H}(\bar{y}) [\bar{t}, [\bar{u}, \bar{v}]] = \bar{0}$ for all $t, u, v, y \in \mathcal{N}$. Putting y = yz, we infer that $[\bar{u}, \bar{v}] \tilde{H}(\bar{y}) \bar{z}[\bar{t}, [\bar{u}, \bar{v}]] = \bar{0}$ for all $t, u, v, y, z \in \mathcal{N}$. Consequently,

$$[\bar{u}, \bar{v}]\tilde{H}(\bar{y})\mathcal{N}/\mathcal{P}[\bar{t}, [\bar{u}, \bar{v}]] = \{\bar{0}\}$$
 for all $t, u, v, y \in \mathcal{N}$.

Since \mathcal{N}/\mathcal{P} is 3-prime, the above relation yields that

(4)
$$[\bar{u},\bar{v}]\tilde{H}(\bar{y}) = \bar{0} \text{ or } [\bar{t},[\bar{u},\bar{v}]] = \bar{0} \text{ for all } t,u,v,y \in \mathcal{N}.$$

Suppose there exist two elements $u_0, v_0 \in \mathcal{N}$ such that $[\bar{u}_0, \bar{v}_0]\tilde{H}(\bar{y}) = \bar{0}$ for all $y \in \mathcal{N}$. In particular, putting y = [r, t] and invoking (1), we get

(5)
$$[\bar{u}_0, \bar{v}_0]d([\bar{r}, \bar{t}]) = 0 \text{ for all } y, r, t \in \mathcal{N}.$$

According to (2) and (1), we have $[\bar{u}, \bar{v}]\tilde{d}([\bar{x}, [\bar{u}, \bar{v}]]) = \bar{0}$ for all $u, v, x \in \mathcal{N}$, so that

(6)
$$[\bar{u},\bar{v}]\tilde{d}(\bar{x}[\bar{u},\bar{v}]) = [\bar{u},\bar{v}]\tilde{d}([\bar{u},\bar{v}]\bar{x}) \text{ for all } u,v,x \in \mathcal{N}.$$

Hence, for all $u, v, x \in \mathcal{N}$ we have $[\bar{u}, \bar{v}]\tilde{d}(\bar{x})[\bar{u}, \bar{v}] + [\bar{u}, \bar{v}]\bar{x}\tilde{d}([\bar{u}, \bar{v}]) = [\bar{u}, \bar{v}]^2\tilde{d}(\bar{x}) + [\bar{u}, \bar{v}]\tilde{d}([\bar{u}, \bar{v}])\bar{x}$. Replacing x by [r, t] and [u, v] by $[u_0, v_0]$ in the previous relation and using (5), we get

$$\left([\bar{u}_0,\bar{v}_0]\bar{r}\bar{t}-[\bar{u}_0,\bar{v}_0]\bar{t}\bar{r}\right)\tilde{d}([\bar{u}_0,\bar{v}_0])=\bar{0} \text{ for all } r,t\in\mathcal{N}.$$

For t = H(y)k, we obtain

$$[\bar{u}_0, \bar{v}_0]\bar{r}\tilde{H}(\bar{y})\bar{k}\tilde{d}([\bar{u}_0, \bar{v}_0]) = \bar{0} \text{ for all } k, r, y \in \mathcal{N},$$

which reduces to

$$[\bar{u}_0, \bar{v}_0] \mathcal{N}/\mathcal{P} \tilde{H}(\bar{y}) \mathcal{N}/\mathcal{P} \tilde{d}([\bar{u}_0, \bar{v}_0]) = \{\bar{0}\} \text{ for all } y \in \mathcal{N}.$$

By 3-primeness of \mathcal{P} , the latter relation shows that

 $[\bar{u}_0, \bar{v}_0] = \bar{0} \text{ or } \tilde{H}(\bar{y}) = \bar{0} \text{ or } \tilde{d}([\bar{u}_0, \bar{v}_0]) = \bar{0} \text{ for all } y \in \mathcal{N}.$

As $H(\mathcal{N}) \nsubseteq \mathcal{P}$, then $\tilde{H} \neq \bar{0}$ and hence (4) assures that

$$[\bar{u}, \bar{v}] = \bar{0} \text{ or } \tilde{d}([\bar{u}, \bar{v}]) = \bar{0} \text{ or } [\bar{u}, \bar{v}] \in Z(\mathcal{N}/\mathcal{P}) \text{ for all } u, v \in \mathcal{N}$$

So that,

(7)
$$\tilde{d}([\bar{u},\bar{v}]) = \bar{0} \text{ or } [\bar{u},\bar{v}] \in Z(\mathcal{N}/\mathcal{P}) \text{ for all } u, v \in \mathcal{N}.$$

Letting $\bar{a} = [\bar{u}_0, \bar{v}_0] \in Z(\mathcal{N}/\mathcal{P})$ and taking x = ax in (1), we find that $\tilde{d}([\bar{a}\bar{x}, \bar{y}]) = \tilde{H}([\bar{a}\bar{x}, \bar{y}])$ for all $x, y \in \mathcal{N}$. By defining d and according to (1), we arrive at $\tilde{d}(\bar{a})[\bar{x}, \bar{y}] = \bar{0}$ for all $x, y \in \mathcal{N}$. Left multiplying by \bar{r} , where $r \in \mathcal{N}$, we get $\tilde{d}(\bar{a})\bar{r}[\bar{x}, \bar{y}] = \bar{0}$ for all $r, x, y \in \mathcal{N}$ which, in virtue of the 3-primeness of \mathcal{N}/\mathcal{P} , implies that

(8)
$$\tilde{d}(\bar{a}) = \bar{0} \text{ or } [\bar{x}, \bar{y}] = \bar{0} \text{ for all } x, y \in \mathcal{N}.$$

If $\tilde{d}(\bar{a}) \neq \bar{0}$, then (8) shows that \mathcal{N}/\mathcal{P} is a commutative ring. Otherwise, according to (7), we find that $\tilde{d}([\bar{u},\bar{v}]) = \bar{0}$ for all $u, v \in \mathcal{N}$, which gives that \mathcal{N}/\mathcal{P} is a commutative ring by [11, Theorem 3.1] (it suffices to see that each derivation is a generalized derivation). Consequently, \mathcal{N}/\mathcal{P} is a commutative ring in both cases.

(ii) \Rightarrow (iii) Suppose that $d([x, y]) - [d(x), y] \in \mathcal{P}$ for all $x, y \in \mathcal{N}$. This implies that

(9)
$$\hat{d}([\bar{x},\bar{y}]) = [\hat{d}(\bar{x}),\bar{y}] \text{ for all } x, y \in \mathcal{N}.$$

Replacing y by xy in (9), we get $\tilde{d}([\bar{x}, \bar{x}\bar{y}]) = [\tilde{d}(\bar{x}), \bar{x}\bar{y}]$ for all $x, y \in \mathcal{N}$ which implies that $\bar{x}\tilde{d}([\bar{x}, \bar{y}]) + \tilde{d}(\bar{x})[\bar{x}, \bar{y}] = [\tilde{d}(\bar{x}), \bar{x}\bar{y}]$ for all $x, y \in \mathcal{N}$. Combining this result with (9), we obtain

$$\bar{x}[d(\bar{x}), \bar{y}] + d(\bar{x})[\bar{x}, \bar{y}] = [d(\bar{x}), \bar{x}\bar{y}]$$
 for all $x, y \in \mathcal{N}$.

This implies that, for all $x, y \in \mathcal{N}$, we have

(10)
$$\bar{x}d(\bar{x})\bar{y} - \bar{x}\bar{y}d(\bar{x}) + d(\bar{x})[\bar{x},\bar{y}] = d(\bar{x})\bar{x}\bar{y} - \bar{x}\bar{y}d(\bar{x}).$$

On the other hand, replacing y by x in (9), we arrive at

(11)
$$\tilde{d}(\bar{x})\bar{x} = \bar{x}\tilde{d}(\bar{x}) \text{ for all } x \in \mathcal{N}.$$

Using (11) and (10), and after simplification we infer that

$$d(\bar{x})\bar{x}\bar{y} = d(\bar{x})\bar{y}\bar{x}$$
 for all $x, y \in \mathcal{N}$.

Putting yz instead of y in the latter relation and using it again, we get

(12)
$$d(\bar{x}) \mathcal{N}/\mathcal{P}[\bar{x},\bar{z}] = \{\bar{0}\} \text{ for all } x, z \in \mathcal{N}.$$

In the light of the 3-primeness of \mathcal{P} , (12) gives

 $\tilde{d}(\bar{x}) = \bar{0} \text{ or } [\bar{x}, \bar{z}] = \bar{0} \text{ for all } x, z \in \mathcal{N},$

which may be rewritten as

$$d(\bar{x}) = \bar{0} \text{ or } \bar{x} \in Z(\mathcal{N}/\mathcal{P}) \text{ for all } x \in \mathcal{N},$$

which forces that $\tilde{d}(\bar{x}) \in Z(\mathcal{N}/\mathcal{P})$ for all $x \in \mathcal{N}$ by Lemma 2.1(d) and thus \mathcal{N}/\mathcal{P} is a commutative ring by Lemma 2.1(c).

The next theorem generalizes the result [10, Theorem 2.4].

Theorem 2.3. Let \mathcal{N} be a 2-torsion near-ring and \mathcal{P} be a prime ideal of \mathcal{N} . If \mathcal{N} admits a derivation d and a left multiplier H, for which $d(\mathcal{N}) \notin \mathcal{P}$ or $H(\mathcal{N}) \notin \mathcal{P}$, satisfying $d(x \circ y) - H(x \circ y) \in \mathcal{P}$ for all $x, y \in \mathcal{N}$, then \mathcal{N}/\mathcal{P} is a commutative ring with characteristic 2.

Proof. By hypotheses given, we have

(13)
$$\tilde{d}(\bar{x}\circ\bar{y}) - \tilde{H}(\bar{x}\circ\bar{y}) = \bar{0} \text{ for all } x, y \in \mathcal{N}$$

• Firstly, we discuss the case when $H(\mathcal{N}) \subseteq \mathcal{P}$. In this case, (13) becomes in the form $\tilde{d}(\bar{x} \circ \bar{y}) = \bar{0}$ for all $x, y \in \mathcal{N}$. Using the same arguments as those used in the proof of [17, Theorem 3.5], and taking into account the fact that d is a derivation, we arrive to the conclusion $\tilde{d}(\bar{x}) \in Z(\mathcal{N}/\mathcal{P})$ for all $x \in \mathcal{N}$ which implies that \mathcal{N}/\mathcal{P} is a commutative ring by Lemma 2.1(c). Accordingly, for all $x, y, t \in \mathcal{N}$, we have

$$\begin{aligned} d(\bar{x} \circ \bar{y}\bar{t}) &= \bar{0} \\ &= \tilde{d}(\bar{x}(\bar{y}\bar{t} + \bar{y}\bar{t})) \\ &= \tilde{d}(\bar{x})(\bar{y}\bar{t} + \bar{y}\bar{t}) + \bar{x}\tilde{d}(\bar{y} \circ \bar{t}) = \tilde{d}(\bar{x})\bar{y}(\bar{t} + \bar{t}). \end{aligned}$$

In view of $\tilde{d} \neq \bar{0}$ and \mathcal{N}/\mathcal{P} is 3-prime, the last result shows that $2\bar{t} = \bar{0}$ for all $t \in \mathcal{N}$, and hence N/P is a commutative ring of characteristic equal 2.

• Secondly, suppose that $H(\mathcal{N}) \not\subseteq \mathcal{P}$. Replacing y by xy in (13), we obtain $\tilde{d}(\bar{x}(\bar{x} \circ \bar{y})) - \tilde{H}(\bar{x}(\bar{x} \circ \bar{y})) = \bar{0}$ for all $x, y \in \mathcal{N}$. Again, substituting $u \circ v$ for x

in the last equation and applying (13), we arrive at $(\bar{u} \circ \bar{v})\dot{H}((\bar{u} \circ \bar{v}) \circ \bar{y}) = \bar{0}$ for all $u, v, y \in \mathcal{N}$. So that

$$(\bar{u}\circ\bar{v})\tilde{H}(\bar{u}\circ\bar{v})\bar{y} = -(\bar{u}\circ\bar{v})\tilde{H}(\bar{y})(\bar{u}\circ\bar{v})$$
 for all $u, v, y \in \mathcal{N}$.

Now, taking yt instead of y, where $t \in \mathcal{N}$, in the latter expression and using it again, we infer that

$$\left(-(\bar{u}\circ\bar{v})\tilde{H}(\bar{y})(\bar{u}\circ\bar{v})\right)\bar{t}=-(\bar{u}\circ\bar{v})\tilde{H}(\bar{y})\bar{t}(\bar{u}\circ\bar{v}) \text{ for all } u,v,y,t\in\mathcal{N}.$$

It follows that, $(\bar{u} \circ \bar{v})\tilde{H}(\bar{y})(-(\bar{u} \circ \bar{v}))\bar{t} = (\bar{u} \circ \bar{v})\tilde{H}(\bar{y})\bar{t}(-(\bar{u} \circ \bar{v}))$ for all $u, v, y, t \in \mathcal{N}$ in such a way that $(\bar{u} \circ \bar{v})\tilde{H}(\bar{y})[-(\bar{u} \circ \bar{v}), \bar{t}] = \bar{0}$ for all $u, v, y, t \in \mathcal{N}$. Now, taking y = yr the previous expression shows that $(\bar{u} \circ \bar{v})\tilde{H}(\bar{y})\mathcal{N}/\mathcal{P}[-(\bar{u} \circ \bar{v}), \bar{t}] = \{\bar{0}\}$ for all $u, v, y, t \in \mathcal{N}$. In view of the 3-primeness of \mathcal{N}/\mathcal{P} , we find that

(14)
$$(\bar{u} \circ \bar{v})\tilde{H}(\bar{y}) = \bar{0} \text{ or } -(\bar{u} \circ \bar{v}) \in Z(\mathcal{N}/\mathcal{P}) \text{ for all } u, v \in \mathcal{N}.$$

If there are two elements $u_0, v_0 \in \mathcal{N}$ such that

(15)
$$(\bar{u}_0 \circ \bar{v}_0) \dot{H}(\bar{y}) = \bar{0} \text{ for all } y \in \mathcal{N}$$

Replacing y by $(u_0 \circ v_0) \circ y$ in (15) and using (13), we get $(\bar{u}_0 \circ \bar{v}_0) d((\bar{u}_0 \circ \bar{v}_0) \circ \bar{y}) = \bar{0}$ for all $y \in \mathcal{N}$, means that $(\bar{u}_0 \circ \bar{v}_0) d((\bar{u}_0 \circ \bar{v}_0) \bar{y}) = -(\bar{u}_0 \circ \bar{v}_0) d(\bar{y}(\bar{u}_0 \circ \bar{v}_0))$ for all $\bar{y} \in \mathcal{N}$. By property defining of d, we obtain $(\bar{u}_0 \circ \bar{v}_0) d(\bar{u}_0 \circ \bar{v}_0) \bar{y} + (\bar{u}_0 \circ \bar{v}_0)^2 d(\bar{y}) = -(\bar{u}_0 \circ \bar{v}_0) d(\bar{y}) (\bar{u}_0 \circ \bar{v}_0) - (\bar{u}_0 \circ \bar{v}_0) \bar{y} d(\bar{u}_0 \circ \bar{v}_0)$ for all $y \in \mathcal{N}$. Taking $r \circ s$ in the place of y, where $r, s \in \mathcal{N}$, we get

$$\begin{aligned} &(\bar{u}_0 \circ \bar{v}_0)\tilde{d}(\bar{u}_0 \circ \bar{v}_0)(\bar{r} \circ \bar{s}) + (\bar{u}_0 \circ \bar{v}_0)^2\tilde{d}(\bar{r} \circ \bar{s}) \\ &= -(\bar{u}_0 \circ \bar{v}_0)\tilde{d}(\bar{r} \circ \bar{s})(\bar{u}_0 \circ \bar{v}_0) - (\bar{u}_0 \circ \bar{v}_0)(\bar{r} \circ \bar{s})\tilde{d}(\bar{u}_0 \circ \bar{v}_0) \end{aligned}$$

According to (13) and (15), the preceding relation gives

$$(\bar{u}_0 \circ \bar{v}_0)(\bar{r} \circ \bar{s})d(\bar{u}_0 \circ \bar{v}_0) = \bar{0} \text{ for all } r, s \in \mathcal{N}$$

in other words,

$$\left((\bar{u}_0\circ\bar{v}_0)\bar{r}\bar{s}+(\bar{u}_0\circ\bar{v}_0)\bar{s}\bar{r}\right)\tilde{d}(\bar{u}_0\circ\bar{v}_0)=\bar{0} \text{ for all } r,s\in\mathcal{N}.$$

Now, taking r = H(y) and invoking (15), we obtain

$$(\bar{u}_0 \circ \bar{v}_0)\bar{s}H(\bar{y})d(\bar{u}_0 \circ \bar{v}_0) = \bar{0} \text{ for all } y, s \in \mathcal{N}$$

which reduces to $(\bar{u}_0 \circ \bar{v}_0) \mathcal{N}/\mathcal{P} \tilde{H}(\bar{y}) \tilde{d}(\bar{u}_0 \circ \bar{v}_0) = \{\bar{0}\}$ for all $y \in \mathcal{N}$. Since \mathcal{N}/\mathcal{P} is 3-prime, we conclude that

$$\bar{u}_0 \circ \bar{v}_0 = \bar{0} \text{ or } \tilde{H}(\bar{y})\tilde{d}(\bar{u}_0 \circ \bar{v}_0) = \bar{0} \text{ for all } y \in \mathcal{N}$$

Putting yt instead of y, where $t \in \mathcal{N}$, in the last equation and using the 3-primeness of \mathcal{N}/\mathcal{P} , we find that

$$\bar{u}_0 \circ \bar{v}_0 = \bar{0} \text{ or } \hat{H}(\bar{y}) = \bar{0} \text{ or } \hat{d}(\bar{u}_0 \circ \bar{v}_0) = \bar{0} \text{ for all } y \in \mathcal{N}.$$

Since $H \neq 0$, (14) reduces to

(16)
$$d(\bar{u} \circ \bar{v}) = \bar{0} \text{ or } -(\bar{u} \circ \bar{v}) \in Z(\mathcal{N}/\mathcal{P}) \text{ for all } u, v \in \mathcal{N}.$$

Suppose there exist two elements $u_0, v_0 \in \mathcal{N}$ such that $-(\bar{u}_0 \circ \bar{v}_0) \in Z(\mathcal{N}/\mathcal{P})$, in view of Lemma 2.1(d) we have $\tilde{d}(-(\bar{u}_0 \circ \bar{v}_0)) \in Z(\mathcal{N}/\mathcal{P})$. To simplify the notation, let's set $\bar{k} = -(\bar{u}_0 \circ \bar{v}_0)$; returning to the equation (13) and replacing x by kx, we obtain

$$\tilde{d}(\bar{k}(\bar{x}\circ\bar{y})) = \tilde{H}(\bar{k}(\bar{x}\circ\bar{y}))$$
 for all $x, y \in \mathcal{N}$.

Using the definition of d and the property $\bar{k} \in Z(\mathcal{N}/\mathcal{P})$, we get $\tilde{d}(\bar{x} \circ \bar{y})\bar{k} + \tilde{d}(\bar{k})(\bar{x} \circ \bar{y}) = \tilde{H}(\bar{x} \circ \bar{y})\bar{k}$ for all $x, y \in \mathcal{N}$ which implies that $\tilde{d}(\bar{k})(\bar{x} \circ \bar{y}) = \bar{0}$ for all $x, y \in \mathcal{N}$. Left multiplying the latter relation by \bar{r} , where $r \in \mathcal{N}$, and in view of $\tilde{d}(\bar{k}) \in Z(\mathcal{N}/\mathcal{P})$, we conclude that

(17)
$$d(\bar{k}) \mathcal{N}/\mathcal{P} (\bar{x} \circ \bar{y}) = \{\bar{0}\} \text{ for all } x, y \in \mathcal{N}$$

and hence by 3-primeness of \mathcal{N}/\mathcal{P} we obtain $d(\bar{k}) = \bar{0}$ or $\bar{x} \circ \bar{y} = \bar{0}$ for all $x, y \in \mathcal{N}$. If the first condition is not verified, clearly the second condition implies that $\bar{x}\bar{y} = -\bar{y}\bar{x}$ for all $x, y \in \mathcal{N}$. Replacing y by yt, where $t \in \mathcal{N}$, we obtain $\bar{x}\bar{y}\bar{t} = \bar{y}(-\bar{x})\bar{t} = \bar{y}\bar{t}(-\bar{x})$ which means that $\bar{y}[\bar{t}, -\bar{x}] = \bar{0}$ for all $x, y, t \in \mathcal{N}$. It follows that $[\bar{t}, -\bar{x}]\bar{y}[\bar{t}, -\bar{x}] = 0$ and hence $[\bar{t}, -\bar{x}]\mathcal{N}/\mathcal{P}[\bar{t}, -\bar{x}] = \{\bar{0}\}$ for all $t, x \in \mathcal{N}$. In view of the 3-primeness of \mathcal{N}/\mathcal{P} , the last result shows that \mathcal{N}/\mathcal{P} is a commutative ring. So, our condition that $\bar{x} \circ \bar{y} = \bar{0}$ yields $\bar{x}(\bar{y} + \bar{y}) = \bar{0}$ for all $x, y \in \mathcal{N}$. Substituting xr for x in the last result and in view of the 3-primeness of \mathcal{N}/\mathcal{P} is of characteristic 2. Now, suppose that $\tilde{d}(\bar{k}) = \bar{0}$ for all $k = -(\bar{u} \circ \bar{v}) \in Z(\mathcal{N}/\mathcal{P})$, then (16) yields $\tilde{d}(\bar{u} \circ \bar{v}) = \bar{0}$ for all $u, v \in \mathcal{N}$, and therefore in virtue of (13) we find that

(18)
$$\tilde{H}(\bar{u} \circ \bar{v}) = \bar{0} \text{ for all } u, v \in \mathcal{N}.$$

Replacing v by uv in (18), we get $\tilde{H}(\bar{u})(\bar{u} \circ \bar{v}) = \bar{0}$ which means that $\tilde{H}(\bar{u})\bar{u}\bar{v} = -\tilde{H}(\bar{u})\bar{v}\bar{u}$ for all $u, v \in \mathcal{N}$. Once again, taking vt instead of v, where $t \in \mathcal{N}$, in the last equation and using it, we arrive at

(19)
$$\tilde{H}(\bar{u}) = \bar{0} \text{ or } \bar{u} \in Z(\mathcal{N}/\mathcal{P}) \text{ for all } u \in \mathcal{N}.$$

Let u_0 be an arbitrary element of \mathcal{N} such that $\tilde{H}(\bar{u}_0) = \bar{0}$, according to (18) and additivity of H we have

$$\begin{aligned} 0 &= H(\bar{u}_0 \circ \bar{v}k) \\ &= \tilde{H}(\bar{u}_0)\bar{v}\bar{k} + \tilde{H}(\bar{v}\bar{k})\bar{u}_0 \\ &= \tilde{H}(\bar{v})\bar{k}\bar{u}_0 \text{ for all } v, k \in \mathcal{N}. \end{aligned}$$

Using the 3-primeness of \mathcal{N}/\mathcal{P} together $\tilde{H} \neq \bar{0}$, we can conclude that $\bar{u}_0 = \bar{0}$ therefore, from (19) and Lemma 2.1(b), we conclude that \mathcal{N}/\mathcal{P} is a commutative ring. Now, returning to (18), we can see that $\tilde{H}(\bar{u}\bar{t}\circ\bar{v}) = \tilde{H}(\bar{u})\bar{t}(\bar{v}+\bar{v}) = \bar{0}$ for all $u, v, t \in \mathcal{N}$. Consequently, \mathcal{N}/\mathcal{P} is of characteristic 2 which completes the proof.

The following example shows that the 3-primeness of $\mathcal P$ that we used in our results cannot be omitted.

Example 2.4. Consider \mathcal{M} be an any left near-ring and let us define $\mathcal{N}, \mathcal{P}, d, H$ by:

$$\mathcal{N} = \left\{ \begin{pmatrix} 0 & r & s \\ 0 & 0 & 0 \\ 0 & t & 0 \end{pmatrix} \mid 0, r, s, t \in \mathcal{M} \right\}, \ \mathcal{P} = \left\{ \begin{pmatrix} 0 & r & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mid 0, r \in \mathcal{M} \right\},\ d \begin{pmatrix} 0 & r & s \\ 0 & 0 & 0 \\ 0 & t & 0 \end{pmatrix} = \begin{pmatrix} 0 & s & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \ \text{and} \ H \begin{pmatrix} 0 & r & s \\ 0 & 0 & 0 \\ 0 & t & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & t & 0 \end{pmatrix}.$$

We can see that \mathcal{P} is an ideal of the near-ring \mathcal{N} which is not 3-prime, d is a derivation of \mathcal{N} and H is a left multiplier of \mathcal{N} which satisfies all identities of our theorems. Furthermore, \mathcal{N}/\mathcal{P} is also a noncommutative ring.

Acknowledgments. The authors thank the reviewer for valuable suggestions and comments.

References

- A. Abbasi, A. N. Khan, and M. S. Khan, Actions of generalized derivations on prime ideals in *-rings with applications, Hacet. J. Math. Stat. 52 (2023), no. 5, 1219–1228.
- [2] M. Ashraf and S. Ali, On (σ, τ)-derivations of prime near-rings. II, Sarajevo J. Math. 4(16) (2008), no. 1, 23–30.
- [3] M. Ashraf and S. Ali, On left multipliers and the commutativity of prime rings, Demonstratio Math. 41 (2008), no. 4, 763–771.
- [4] M. Ashraf, A. Ali, and S. Ali, (σ, τ)-derivations on prime near rings, Arch. Math. (Brno) 40 (2004), no. 3, 281–286.
- [5] M. Ashraf and A. Boua, On semiderivations in 3-prime near-rings, Commun. Korean Math. Soc. 31 (2016), no. 3, 433-445. https://doi.org/10.4134/CKMS.c150155
- [6] M. Ashraf, A. Boua, and A. Raji, On derivations and commutativity in prime nearrings, J. Taibah University for Science 8 (2014), no. 3, 301–306.
- [7] H. E. Bell, On derivations in near-rings. II, in Nearrings, nearfields and K-loops (Hamburg, 1995), 191–197, Math. Appl., 426, Kluwer Acad. Publ., Dordrecht, 1997.
- [8] H. E. Bell, A. Boua, and L. Oukhtite, On derivations of prime near-rings, Afr. Diaspora J. Math. 14 (2012), no. 1, 65–72.
- [9] A. Boua, Commutativity of Jordan ideals in 3-prime near-rings with derivations, Commun. Korean Math. Soc. 33 (2018), no. 1, 37-44. https://doi.org/10.4134/CKMS. c170015
- [10] A. Boua and L. Oukhtite, *Derivations on prime near-rings*, Int. J. Open Probl. Comput. Sci. Math. 4 (2011), no. 2, 162–167.
- [11] A. Boua, L. Oukhtite, and A. Raji, On 3-prime near-rings with generalized derivations, Palest. J. Math. 5 (2015), no. 1, 12–16.
- [12] M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Internat. J. Math. Math. Sci. 15 (1992), no. 1, 205-206. https://doi.org/10.1155/ S0161171292000255
- [13] A. En-guady and A. Boua, On Lie ideals with left derivations in 3-prime near-rings, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 68 (2022), no. 1, 123–132.
- [14] N. J. Groenewald, Different prime ideals in near-rings, Comm. Algebra 19 (1991), no. 10, 2667–2675. https://doi.org/10.1080/00927879108824287
- [15] S. Mouhssine and A. Boua, (α, τ) -*P*-derivations on left near-rings, Note Mat. **42** (2022), no. 2, 93–107.

- [16] A. Raji, Some commutativity criteria for 3-prime near-rings, Algebra Discrete Math. 32 (2021), no. 2, 280–298.
- [17] M. Samman, L. Oukhtite, A. Raji, and A. Boua, Two sided α-derivations in 3-prime near-rings, Rocky Mountain J. Math. 46 (2016), no. 4, 1379–1393. https://doi.org/ 10.1216/RMJ-2016-46-4-1379

Abdelkarim Boua Department of Mathematics Polydisciplinary Faculty, LSI, Taza Sidi Mohammed Ben Abdellah University Fez, Morocco Email address: abdelkarimboua@yahoo.fr

Abderrahmane Raji LMACS Laboratory Faculty of Sciences and Technology Sultan Moulay Slimane University Beni Mellal, Morocco *Email address*: rajiabd2@gmail.com

Abdelilah Zerbane Department of Mathematics Polydisciplinary Faculty, LSI, Taza Sidi Mohammed Ben Abdellah University Fez, Morocco Email address: abdelilah.zerbane@usmba.ac.ma