ON GENERALIZED SYMMETRIC BI-DERIVATIONS IN PRIME RINGS

M. Ali Óztúrk and Mehmet Sapanci

Abstract

After the derivation was defined in [19] by Posner a lot of researchers studied the derivations in ring theory in different manners such as in [2], [4], [5], , etc Furthermore, many researches followed the definition of the generalized derivation ([3], [6], [7], .., etc). Finally, Maksa defined a symmetric bi-derivation and many researches have been done in ring theory by using this definition In this work, defining a symmetric bi- α-derivation, we study the mentioned researches above in the light of this new concept

1. Introduction

Throughout the work, R will represent an associative ring and Z will denote the center of R. We set $C_{\alpha}=\{c \in R \mid c \alpha(x)=x c, \forall x \in \mathrm{R}\}$, and $[x, y]_{\alpha}=x \alpha(y)-y x$ and $(x, y)_{\alpha}=x \alpha(y)+y x$, where α is a nonzero mapping of R. In particular, $C_{1}=Z$, and $[x, y]_{1}=x y-y x$ and $(x, y)_{1}=x y+y x=(x, y)$, in the usual sense. Furthermore, we use the relation:

$$
\begin{aligned}
& {[x, y z]_{\alpha}=y[x, z]_{\alpha}+[x, y]_{\alpha} \alpha(z)} \\
& {[x y, z]_{\alpha}=x[y, z]_{\alpha}+[x, z] y=x[y, \alpha(z)]+[x, z]_{\alpha} y} \\
& (x, y z)_{\alpha}=y(x, z)_{\alpha}+[x, y]_{\alpha} \alpha(z)
\end{aligned}
$$

[^0]and
$$
(x y, z)_{\alpha}=x(y, z)_{\alpha}-[x, z] y=x[y, \alpha(z)]+(x, z)_{\alpha} y .
$$

A mapping $D(\ldots): R \times R \rightarrow R$ is called symmetric if $D(x, y)=$ $D(y, x)$ holds for all $x, y \in R$. A mapping $d: R \rightarrow R$ defined by $d(x)=D(x, x)$ is the called trace of $D(.,$.$) , where D(.,):. R \times R \rightarrow R$ is a symmetric mapping. It is obvious that, if $D(.,):. R \times R \rightarrow R$ is a symmetric mapping which is also bi-additive (i.e. additive in both arguments) then d the trace of $D(.,$.$) satisfies the relation d(x+y)=$ $d(x)+d(y)+2 D(x, y)$ for all $x, y \in R$.

A symmetric bi-additive mapping $D(.,):. R \times R \rightarrow R$ is called a symmetric bi-derivation if $D(x y, z)=D(x, z) y+x D(y, z)$ is fulfilled for all $x, y, z \in R$. Then the relation $D(x, y z)=D(x, y) z+y D(x, z)$ is also fulfilled for all $x, y, z \in R$.

2. The results

We shall need the following well-known and frequently used lemmas.
Lemma 1. (14, Lemma 2. (n) $]$) Let R be a prime ring, $a \in R$ and $d: R \rightarrow R$ an α-dervatıon. If U is a non-zero adeal of R and $a d(U)=0$ then $a=0$ or $d=0$.

Lemma 2. ([11, Lemma 1]) Let R be a prime ring and U a non-zero right ideal of R. If U is commutative, then R is commutative

Lemma 3. ([8, Lemma 1]) Let R be a semı-prome, 2-torsion free ring and U a Lue ideal of R. If $[U, U] \subset Z$, then $U \subset Z$.

Lemma 4 ([13, Lemma 3]) Let R be a prime ring, $a, b \in R$ and σ, τ an automorphism of R. If $b, a b \in C_{\sigma, \tau}$, then $a \in Z$ or $b=0$.

We shall start with the following definition.
Definition 5 . Let R be a ring. A symmetric bi-additive mapping $D(.,):. R \times R \rightarrow R$ is called a symmetric bi- α-derivation if $D(x y, z)=$ $D(x, z) \alpha(y)+x D(y, z)$ is fulfilled for all $x, y, z \in R$, where $\alpha: R \times R$ is a non-zero mapping. Then the relation $D(x, y z)=D(x, y) \alpha(z)+$ $y D(x, z)$ is also fulfilled for all $x, y, z \in R$.

For any fixed $y \in R$, a mapping $x \mapsto D(x, y)$ is an α-derivation, where $D(.,$.$) is a symmetric bi- \alpha$-derivation of R.

Example 6. For a commutative ring R, let
$M:=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right) \right\rvert\, a, b \in R\right\}$, it is obvious that M is a ring under matrix addition and multiplication. $D():, M \times M \rightarrow M$, defined by $\left(\left(\begin{array}{cc}a_{1} & b_{1} \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}a_{2} & b_{2} \\ 0 & 0\end{array}\right)\right) \rightarrow\left(\begin{array}{cc}0 & a_{1} a_{2} \\ 0 & 0\end{array}\right)$ is a symmetric bi- α-derivation, where $\alpha: M \rightarrow M$ defined by $\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right) \rightarrow\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right)$ is a mapping.

Remark 7. Let R be a 2-torsion free (2.e. $2 x=0$ implies $x=0$) prime ring and α a homomorphism of R. If α is an even function, then $\alpha=0$. Therefore, when R as 2-torszon free ming, the homomorphism $\alpha: R \rightarrow R$ assumed to be an odd function.

Theorem 8. Let R be a prime ring which is 2 -torsion free. Let $D(.,$.$) be a symmetruc br- \alpha$-derivation of R and d the trace of $D(,$.$) ,$ where α is an automorphusm of R. If $[d(x), x]_{\alpha}=0$ for all x in R, then R is commutative or $D=0$.

Proof. We assume that R is non-commutative. From the hypothesis, for any $x, y \in R$

$$
[d(x+y), x+y]_{\alpha}+[d(-x+y),-x+y]_{\alpha}=0
$$

and since R is 2 -torsion free we have, for all $x, y \in R$

$$
\begin{equation*}
[d(x), y]_{\alpha}+2[D(x, y), x]_{\alpha}=0 . \tag{1}
\end{equation*}
$$

Writing $x y$ for y in (1), from hypothesis and (1), sunce R is 2 -torsion free we obtain, for all $x, y \in R$

$$
\begin{equation*}
d(x) \alpha([x, y])=0 \tag{2}
\end{equation*}
$$

From (2) and Lemma 1 one can conclude that, for $x \notin Z$ and since α is automorphsm of R we have $d(x)=0$ (note that, for any fixed $x \in R$ a mapping $y \mapsto[x, y]$ is a derivation). Let $x \in Z, y \notin Z$. Then $-y, x+y, x+(-y) \notin Z$. Thus, $0=d(x+y)=d(x)+2 D(x, y)$ and $0=d(x+(-y))=d(x)-2 D(x, y)$ which implies that $d(x)=0$. Therefore we have proved that $d(x)=0$ for all $x \in R$, which means that $D(x, y)=0$ for all $x, y \in R$. Namely, D is zero

Theorem 9. Let R be a prime ring which us 2-torsion free. Let $D(.,$.$) be a symmetric bi- \alpha$-derivation of R and d the trace of $D(.,$.$) ,$ where α us an automorphism of R. If $[d(x), x]_{\alpha} \in C_{\alpha}$ for all $x \in R$, then R is commutative or $D=0$.

Proof. We assume that R is non-commutative. In this case, from the hypothesis, for any $x, y \in R$

$$
[d(x+y), x+y]_{\alpha}+[d(-x+y),-x+y]_{\alpha} \in C_{\alpha}
$$

and since R is 2-torsion free we have, for all $x, y \in R$

$$
\begin{equation*}
[d(x), y]_{\alpha}+2[D(x, y), x]_{\alpha} \in C_{\alpha} \tag{3}
\end{equation*}
$$

Replacing y by x^{2} in (3), from hypothesis and (3), since R is 2 -torsion free we get, for all $x, y \in R$

$$
\begin{equation*}
x[d(x), x]_{\alpha} \in C_{\alpha} \tag{4}
\end{equation*}
$$

Thus, from hypothesis and (4), we have $y x[d(x), x]_{\alpha}=x[d(x), x]_{\alpha} \alpha(y)$ and so we get, for all $x, y \in R$

$$
\begin{equation*}
[x, y][d(x), x]_{\alpha}=0 \tag{5}
\end{equation*}
$$

Now, the relation above makes it possible to conclude, using the same arguments as in the proof of Theorem 8 , that for any $x \notin Z$ we have $[d(x), x]_{\alpha}=0$. Thus, from Theorem 8 we obtain $D=0$.

THEOREM 10. Let R be a 2-torsion free prime ring, α be an automorphism of $R, D(.,$.$) a symmetric bi- \alpha$-dervvation of R and d the trace of $D(,$.$) . If (d(x), x)_{\alpha}=0$ for all $x \in R$, then $[d(x), x]_{\alpha}=0$ for all $x \in R$. Furthermore, of R is non-commutative, then $D=0$.

Proof. From the hypothesis, for any $x, y \in R$

$$
(d(x+y), x+y)_{\alpha}+(d(-x+y),-x+y)_{\alpha}=0
$$

and since R is 2 -torsion free we have, for all $x, y \in R$

$$
\begin{equation*}
(d(x), y)_{\alpha}+2(D(x, y), x)_{\alpha}=0 \tag{6}
\end{equation*}
$$

Replacing y by $y x$ in (6), from (6) we get, for all $x, y \in R$

$$
\begin{equation*}
[d(x), y]_{\alpha}+2(D(x, y), x)_{\alpha} \alpha(x)+2[x, y] d(x)=0 \tag{7}
\end{equation*}
$$

Now, right multiplication of the relation (6) by $\alpha(x)$ gives for all $x, y \in$ R

$$
\begin{equation*}
(d(x), y)_{\alpha} \alpha(x)+2(D(x, y), x)_{\alpha} \alpha(x)=0 . \tag{8}
\end{equation*}
$$

Combining (7) and (8), from the hypothesis we have, for all $x, y \in R$

$$
\begin{equation*}
x y d(x)=0 . \tag{9}
\end{equation*}
$$

Replacing y by $d(x) y x$ in (9) and sunce R is prıme rung we have, for all $x, y \in R$

$$
\begin{equation*}
x d(x)=0 . \tag{10}
\end{equation*}
$$

Consequently, from the hypothesis and (10) we get $[d(x), x]_{\alpha}=0$ for all $x \in R$. In this case, if R is non-commutative, then $D=0$ by Theorem 8.

Theorem 11. Let R be a prime ring which is 2, 3-torsion free and α an automorphism of R Let $D(.,$.$) be a symmetric br- \alpha$-dervation of R and d the trace of $D(.$,$) . If (d(x), x)_{\alpha} \in C_{\alpha}$ for all $x \in R$, then R is commutative or $D=0$.

Proof. We assume that R is non-commutative. In this case, from the hypothesss, for any $x, y \in R$

$$
(d(x+y), x+y)_{a}+(d(-x+y),-x+y)_{\alpha} \in C_{\alpha}
$$

and since R is 2 -torsion free we have, for all $x, y \in R$

$$
\begin{equation*}
(d(x), y)_{\alpha}+2(D(x, y), x)_{\alpha} \in C_{\alpha} \tag{11}
\end{equation*}
$$

Replacing y by x^{2} in (11) and from (11) we get, for all $x \in R$

$$
\begin{equation*}
[d(x), x]_{\alpha} \alpha(x) \in C_{\alpha} . \tag{12}
\end{equation*}
$$

Thus, from (12)

$$
\begin{aligned}
0 & =\left[[d(x), x]_{\alpha} \alpha(x), y\right]_{\alpha} \\
& =[d(x), x]_{\alpha}[\alpha(x), \alpha(y)]+\left[[d(x), x]_{\alpha}, y\right]_{\alpha} \alpha(x)
\end{aligned}
$$

and so from the hypothesis we get, for all $x, y \in R$

$$
\begin{equation*}
[d(x), x]_{\alpha} \alpha([x, y])=0 \tag{13}
\end{equation*}
$$

From (13) and Lemma 1 one can conclude that, for $x \notin Z$ and since α is automorphism of R we have $[d(x), x]_{\alpha}=0$. Thus, we have $d(v)=0$ for all $x \notin Z$ by Theorem 8 . Now, let $x \in Z, y \notin Z$. Then $-y, x+y, x+$ $(-y) \notin Z$. Thus, $0=d(x+y)=d(x)+2 D(x, y)$ and $0=d(x+(-y))=$ $d(x)-2 D(x, y)$ which implies that $d(x)=0$. Therefore we have proved that $d(x)=0$ for all $x \in R$, which means that $D(x, y)=0$ for all $x, y \in R$. Namely, D is zero.

Lemma 12. Let R be a 2-torsion free prime ring, U a non-zero right (or left) ideal of R and α a mapping (or one-to-one homomorphism) of R. Let $D(.,$.$) be a symmetric bi- \alpha$-derivation of R and d the trace of $D(.,$.$) . If d(U)=0$, then $D=0$.

Proof For any $u, v \in U$

$$
d(u+v)=d(u)+d(v)+2 D(u, v)
$$

and since R is 2 -torsion free we have $D(u, v)=0$ for all $u, v \in U$. Writing $v r, r \in R$ for v in this relation. From this relation and since R is prime ring we have $D(u, r)=0$ for all $u \in U$ and $r \in R$. In this relation, writing us, $s \in R$ for u and since R is prime ring we have $D(s, r)=0$ for all $r, s \in R$.

Theorem 13. Let R be a 2-torsion free prime ring, U a non-zero ideal of R and α an automorphism of R. Let $D(.,$.$) be a symmetric$ bi- α-derivation of R and d the trace of $D(.,$.$) . If d(u) \in C_{\alpha}$ for all $u \in U$, then R is commutative or $D=0$.

Proof. We assume that R is non-commutative. Then, replacing u by $u+v, v \in U$ in the hypothesis, from the hypothesis and since R is 2-torsion free we have $D(u, v) \in C_{\alpha}$ for all $u, v \in U$. In this relation, writing u^{2} for u, from this relation and since R is 2 -torsion free, we have $u D(u, v) \in C_{\alpha}$ for all $u, v \in U$. Thus we have $u \in Z$ for all $u \in$ or we have $D(u, v)=0$ for all $u, v \in U$ by Lemma 4 .

In other words, U is the union of its subsets $A=\{u \in U \mid D(u, v)=$ 0 for all $u \in U\}$ and $B=\{u \in U \mid u \in Z$ for all $u \in U\}$. Note that A and B are the additive subgroups of U. If $U=B$ then $U \subset Z$ and so R is commutative. This contradicts the our assumption. So $U \neq B$. Thereforc, by Brauer trick, we have $U=A$ which implies that $D(u, v)=0$ for all $u, v \in U$. Finally, we get $D=0$ by Lemma 12 .

Theorem 14. Let R be a prome ring, U a non-zero vdeal of R and α an automorphusm of R. Let $D(,$.$) be a symmetric bi- \alpha$-dervvation of R such that $d(U) \subset U$ and d the trace of $D(.$,$) .$

1) If R is 2-torsion free and $[d(u), u]_{\alpha}=0$ for all $u \in U$, then R is commutative or $D=0$.
ii) If R is 2, 3-torsion free and $[d(u), u]_{\alpha} \in C_{\alpha}$ for all $u \in U$, then R is commutative or $D=0$

Proof i) We assume that R is non-commutative. In this case, U isn't a commutative ideal of R by Lemma 2. Since U is a non-zero ideal of a prime ring R which is 2 -torsion free, U itself is a non-commutative prime ring which is 2-torsion free Therefore, $d(u)=0$ for all $u \in U$ by Theorem 8. Thus, we have $D=0$ by Lemma 12
i1) We assume that R is non-commutative Then, snince U is $2,3-$ torsion free, we have $[d(u), u]_{\alpha}=0$ for all $u \in U$ by the proof of Theorem 9 . Hence $D=0$ by (i).

Theorem 15. Let R be a prime ring, U a non-zero ideal of R and α an automorphism of R. Let $D(.,$.$) be a symmetric br- \alpha$-dervvation of R such that $d(U) \subset U$ and d the trace of $D(,$.$) .$
i) If R is 2-torszon free and $(d(u), u)_{\alpha}=0$ for all $u \in U$, then R is commutative or $D=0$.
ii) If R is 2, 3-torsion free and $(d(u), u)_{\alpha} \in C_{\alpha}$ for all $u \in U$, then R as commutative or $D=0$.

Proof. Similar to the Theorem 14.
Lemma 16. Let R be a prome ring, $a \in R, U$ a non-zero Lie rdeal of R and α a homomorphism of R. Let $D(.,$.$) be a symmetric br-$ α-dervation of R such that $d(U) \subset U$ and d the trace of $D(.,$.$) . If$ $[a, u]_{\alpha}=0$ for all $u \in U$, then $a \in C_{\alpha}$ or $U \subset Z$.

Proof. Writing $[r, u], r \in R$ for u in the hypothesis, from the hypothesis we have, for all $u \in U$ and $r \in R$

$$
\begin{equation*}
\left[[a, r]_{\alpha}, u\right]_{\alpha}=0 \tag{14}
\end{equation*}
$$

Writing $v r, v \in U$ for r in (14) and so, from the hypothesis and (14) we get, for all $u, v \in U$ and $r \in R$

$$
\begin{equation*}
[u, v][a, r]_{\alpha}=0 . \tag{15}
\end{equation*}
$$

Writing $s r, s \in R$ for r in (15) and from (15) we get, for all $u, v \in U$ and $s, r \in R$

$$
\begin{equation*}
[u, v] s[a, r]_{\alpha}=0 . \tag{16}
\end{equation*}
$$

From (16) and since R is prime ring we get $U \subset Z$ by Lemma 3 or $a \in C_{\alpha}$.

Theorem 17. Let R be a 2-torsion free prime ring, U a non-zero Lie vdeal of R and α a homomorphusm of R Let $D(.,$.$) be a symmetric$ br- α-dervation of R and d the trace of $D(.$,
i) If $d(u)=0$ for all $u \in U$, then $U \subset Z$ or $D=0$ or R as commutative.
ii) If $d(u) \in C_{\alpha}$ and $u^{2} \in U$ for all $u \in U$, then $U \subset Z$ or $D=0$ or R is commutative.

Proof i) The linearization of the hypothesis and from the hypothesis we have, for all $u, v \in U$

$$
\begin{equation*}
D(u, v)=0 \tag{17}
\end{equation*}
$$

Writing [u,r], $r \in R$ for u in (17) and from (17) we have, for all $u, v \in U$ and $r \in R$

$$
\begin{equation*}
[D(r, v), u]_{\alpha}=0 \tag{18}
\end{equation*}
$$

Writing $r w, w \in U$ for r in (18), from (17) and (18) we have, for all $u, v, w \in U$ and $r \in R$

$$
\begin{equation*}
D(r, v) \alpha([w, u])=0 \tag{19}
\end{equation*}
$$

Replacing r by $r s, s \in R$ in (19), from (19) we get, for all $u, v, w \in U$ and $r, s \in R$

$$
\begin{equation*}
D(r, v) \alpha(s) \alpha([w, u])=0 \tag{20}
\end{equation*}
$$

Thus, since R is prime ring, from (20) we have, for all $u, v, w \in U$ and $r \in R$

$$
\begin{equation*}
D(r, v)=0 \text { or }[w, u]=0 \tag{21}
\end{equation*}
$$

In this case, from (21) and Lemma 3 we have $U \subset Z$ or we have, for all $v \in U$ and $r \in R$

$$
\begin{equation*}
D(r, v)=0 \tag{22}
\end{equation*}
$$

Now, replacing v by $[r, v], r \in R$ in (22), from (22) we have $[d(r), v]_{\alpha}=$ 0 for all $v \in U$ and $r \in R$. Thus, we get $d(r) \in C_{\alpha}$ for all $r \in R$ or we get $U \subset Z$ by Lemma 16. If $d(r) \in C_{\alpha}$ for ail $r \in R$, then $D=0$ or R is commutative by Theorem 14.
ii) We assume that $U \subset Z$. In this case, from the hypothesis we have, for all $u \in U$

$$
\begin{equation*}
d(u) \in C_{\alpha} \tag{23}
\end{equation*}
$$

Replacing u by $u+v, v \in U$ in (23), from (23) and since R is 2 -torsion free we have, for all $u, v \in U$

$$
\begin{equation*}
D(u, v) \in C_{\alpha} \tag{24}
\end{equation*}
$$

Now, replacing u by u^{2} in (24), from (24) and since R is 2-torsion free we have, for all $u, v \in U$

$$
\begin{equation*}
u D(u, v) \in C_{\alpha} . \tag{25}
\end{equation*}
$$

Thus, from Lemma 4 we have $U \subset Z$ or $D(u, v)=0$ for all $u, v \in U$. In other words, U is the union of its subsets $A=\{u \in U \mid u \in Z$ for all $u \in U\}$ and $B=\{u \in U \mid(D(u, v)=0$ for all $u \in U\}$. Note that A and B are the additive subgroups of U. If $U=A$, then $U \subset Z$ and so this contradicts the our assumption. Thus, $U \neq A$. Therefore, by Brauer trick, we have $U=B$ which implies that $D(u, v)=0$ for all $u, v \in U$. Finally, $D=0$ or R is commutative by (i).

Acknowledgment

This paper is dedicated to the memory of Prof. Dr. Mehmet SAPANCI

References

[1] N. Argaç and M S Yenıgúl, Lie Ideals and Symmetric Br-Derivations of Prime Rings, Pure and Applied Sciences India, to appear
[2] R. Awtar, On a Theorem of Posner, Proc Camb Phil. Soc 73(25) (1973), 25-27
[3] N Aydin and K Kaya, Some Generalizatzons in Prome Rings with (σ, τ)Derivatzons, Doga-Tr J of Math 16 (1992), 169-176
(4] M. Bresar and J. Vukman, Orthogonal Dervoatzons and Extenston of a Theorem of Posner, Radovi Matematickı 5 (1989), 237-246
[5] M. Bresar, A Note on Derzvations, Math J. Okayama Umiv. 32 (1990), 83-88.
[6] J. C Chang, α-Dervivations with Inevitable Values, Bull Inst Math Acad Sct 13(4) (1984), 323-333
[7] J. C Chang, A Note on (σ, τ)-Dervvatzons, Chinese J of Math Sci. 19(3) (1991), 277-285
[8] I N Herstein, On the structure of an Associatve, J of Algebra 14 (1970), 561-571
[9] I N Herstem, A Note on Dervations, Canad Math Bull 21 (3) (1978), 369370
[10] I N Herstem, A Note on Dervvations II, Canad Math Bull 21(4) (1979), 509-511
[11] Y Hirano, A Kaya and H Tominaga, On a Theorem of Mayne, Math J Okayama Unv 25 (1989), 125-132
[12] K Kaya, Prime Rungs with weak- α-Dervatzons, Hacettepe Bull of Natural Sciences and Engineering 16-17 (1987-88), 63-71
[13] K Kaya, On (σ, τ)-Dervuations of Prime Rings, Doga TU Mat D C 12(2) (1988), 42-45
[14] K Kaya, On Prime Rings with α-Derivations, Doga_TU Mat D C 12(2) (1988), 46-51
[15] Gy Maksa, A Remark on Symmetroc Br-Additive Functrons Having Non- negative Diagonalzzation, Glasmk Math 15(35) (1980), 279-282
[16] Gy Maksa, On the Trace of Symmetric Bu-Demvations, C R Math Rep.Acad Scı Canada 9 (1987), 303-307
[17] M A Özturk, M Sapanci, Orthogonal Symmetric Bu-Dervvations on Semiprime Gamma Rings, Hacettepe Bull of Natural Sciences and Engineering, Serles B Math and Statıstics 26 (1997), 31-46
[18] M A Óztürk, M. Sapancı and Soyturk, Symmetric Bi-Dervations on Prime Gamma Rungs, to appear
[19] E Posner, Dervuatıons in Prime Rings, Proc. Amer Math Soc. 8 (1957), 1093-1100
[20] M. Sapancı, M A Ozturk and Y B Jun, Symmetric Br-Dervations on Prome Rungs, East Math. J 15(1) (1999), 105-109
[21] J Vukman, Symmetric Br-Derivations on Prime and Semi-prime Rings, Aẹqatıones Math 38 (1989), 245-254
[22] J Vukman, Two Results Concerning Symmetric Bz-Dervations on Prime Rangs, Aeqationes Math. 40 (1990), 181-189
[23]M S Yenıgul and N Argaç, Ideals and Symmetric Br-Dervvatzons of Prime and Semi-prime Rangs, Math. J Okayama Univ 35 (1993), 189-192
[24] M S Yenıgul and N Argaç, On Prime and Semi-prime Rings with (α-Derivations), Tr J Math 18 (1994), 280-284

M. Ali Öztuirk

Department of Mathematics
Faculty of Arts and Sciences
Cumhuriyet University
58148 Sivas, Turkey

Mehmet Sapanci
Department of Mathematics
Faculty of Science
Ege University
35100 Bornova, Izmir, Turkey

[^0]: Received August 8, 1999. Revised October 14, 1999
 1991 Mathematics Subject Classification 16A12, 16A68, 12A72
 Key words and phrases Symmetric br- α-derivation, symmetric bi-derivation, Prime ring

