MODULE LEFT (m, n)-DERIVATIONS

Yinhua Cui^a and Dong Yun Shin^{b,*}

ABSTRACT. Fošner [1] defined a module left (m, n)-derivation and proved the Hyers-Ulam stability of module left (m, n)-derivations.

In this note, we prove that every module left (m, n)-derivation is trivial if the algebra is unital and $m \neq n$.

1. Stability of Module Left (m, n)-derivations

Let A be an algebra and M be a left A-module. An additive mapping $d: A \to M$ is called a *module left derivation* if $d(xy) = x \cdot d(y) + y \cdot d(x)$ for all $x, y \in A$.

Definition 1.1 ([1]). Let A be an algebra and M be a left A-module. An additive mapping $d: A \to M$ is called a *module left* (m, n)-derivation if

(1) $(m+n)d(xy) = 2mx \cdot d(y) + 2ny \cdot d(x)$

for all $x, y \in A$. Here m and n are nonnegative integers with $m + n \neq 0$.

Theorem 1.2. Let A be a unital algebra with unit e and M be a left A-module. Assume that m and n are nonnegative integers with $m + n \neq 0$ and $m \neq n$. Then each module left (m, n)-derivation $d : A \to M$ is trival.

Assume that $e \cdot x = x$ for all $x \in M$.

Proof. Letting x = y = e in (1), we get (m+n)d(e) = 2(m+n)d(e) and so d(e) = 0. Letting y = e in (1), we get

$$(m+n)d(x) = 2mx \cdot d(e) + 2nd(x) = 2nd(x)$$

for all $x \in A$.

 $\bigodot 2017$ Korean Soc. Math. Educ.

Received by the editors November 08, 2016. Accepted February 03, 2017.

²⁰¹⁰ Mathematics Subject Classification. 16W25, 16D60, 39B62.

Key words and phrases. normed algebra, Banach left A-module, module left (m, n)-derivation. *Corresponding author.

Letting x = e and replacing y by x in (1), we get

 $(m+n)d(x) = 2m \cdot d(x) + 2nx \cdot d(e) = 2md(x)$

for all $x \in A$. So 2nd(x) = 2md(x) for all $x \in A$. Since $m \neq n$, d(x) = 0 for all $x \in A$, as desired.

Remark 1.3. When m = n, the module left (m, n)-derivation is just a module left derivation. In [2], Jung proved the Hyers-Ulam stability of module left derivations $d: A \to M$.

Problem 1.4. Let A be a non-unital algebra and M be a left A-module. Assume that m and n are nonnegative integers with $m + n \neq 0$ and $m \neq n$.

- (1) Is there a non-trivial module left (m, n)-derivation $d : A \to M$?
- (2) Construct a non-trival module left (m, n)-derivation $d : A \to M$.

References

- 1. A. Fošner: On the generalized Hyers-Ulam stability of module left (m, n)-derivations. Aequationes. Math. 84 (2012), 91-98.
- Y. Jung: On the generalized Hyers-Ulam stability of module left derivations. J. Math. Anal. Appl. 339 (2008), 108-114.

^aDepartment of Mathematics, Yanbian University, Yanji 133001, P.R. China *Email address*: cuiyh@ybu.edu.cn

^bDepartment of Mathematics, University of Seoul, Seoul 02504, Republic of Korea *Email address*: dyshin@uos.ac.kr

34