• Title/Summary/Keyword: derivation module

Search Result 45, Processing Time 0.049 seconds

STABILITY OF HOMOMORPHISMS IN BANACH MODULES OVER A C*-ALGEBRA ASSOCIATED WITH A GENERALIZED JENSEN TYPE MAPPING AND APPLICATIONS

  • Lee, Jung Rye
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.91-121
    • /
    • 2014
  • Let X and Y be vector spaces. It is shown that a mapping $f:X{\rightarrow}Y$ satisfies the functional equation ${\ddag}$ $$2df(\frac{x_1+{\sum}_{j=2}^{2d}(-1)^jx_j}{2d})-2df(\frac{x_1+{\sum}_{j=2}^{2d}(-1)^{j+1}x_j}{2d})=2\sum_{j=2}^{2d}(-1)^jf(x_j)$$ if and only if the mapping $f:X{\rightarrow}Y$ is additive, and prove the Cauchy-Rassias stability of the functional equation (${\ddag}$) in Banach modules over a unital $C^*$-algebra, and in Poisson Banach modules over a unital Poisson $C^*$-algebra. Let $\mathcal{A}$ and $\mathcal{B}$ be unital $C^*$-algebras, Poisson $C^*$-algebras, Poisson $JC^*$-algebras or Lie $JC^*$-algebras. As an application, we show that every almost homomorphism $h:\mathcal{A}{\rightarrow}\mathcal{B}$ of $\mathcal{A}$ into $\mathcal{B}$ is a homomorphism when $h(d^nuy)=h(d^nu)h(y)$ or $h(d^nu{\circ}y)=h(d^nu){\circ}h(y)$ for all unitaries $u{\in}\mathcal{A}$, all $y{\in}\mathcal{A}$, and n = 0, 1, 2, ${\cdots}$. Moreover, we prove the Cauchy-Rassias stability of homomorphisms in $C^*$-algebras, Poisson $C^*$-algebras, Poisson $JC^*$-algebras or Lie $JC^*$-algebras, and of Lie $JC^*$-algebra derivations in Lie $JC^*$-algebras.

Adaptive Multi-target Estimation Algorithm in an IR-UWB Radar Environment (IR-UWB 레이더 환경에서 적응형 다중 목표물 추정 알고리즘)

  • Yeo, Bong-Gu;Lee, Byung-Jin;Kim, Sueng-Woo;Youm, Mun-Jin;Kim, Kyung-Seok
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.81-88
    • /
    • 2016
  • In this paper, we propose an adaptive multi-target estimation algorithm using the characteristics of signals in the IR-UWB(Impulse-Radio Ultra Wideband) radar system, which is attracting attention because it has good transparency, robustness to the indoor environment, and high precision positioning of tens of centimeters. We proposed an algorithm that estimates multiple peaks with the characteristic that the signal reflected by the target has a peak. To verify the performance of these algorithms, multiple targets were placed in front of the radar and the existing technique and the multi - target estimation algorithm were compared. The location of the targets is estimated in real time with one transmitting antenna and one receiving antenna. The number of estimates can be increased compared with the existing peak signal derivation method, and multiple targets can be derived. The conventional technique estimates only one target, which results in a mean square error of 1 while a multi - target estimation algorithm yields a result of about 0.05. The proposed method is expected to be able to apply multiple targets to the estimation and application in one IR-UWB module environment.

Smart Growth Measurement System for Aquaponics Production Management (아쿠아포닉스 생산 관리를 위한 지능형 성장 측정 시스템)

  • Lee, Hyounsup;Kim, Jindeog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.357-359
    • /
    • 2022
  • The market for eco-friendly food materials by online distribution is rapidly growing due to major environmental pollution such as air, soil, and water quality, and radical changes in living patterns caused by COVID-19. In addition, because of the aging population and the decrease in agricultural-related population due to social structural changes, aquaponics is emerging as a system that can solve problems such as independence of old economic activities, environmental protection, and securing healthy and safe food. This paper aims to design an intelligent plant growth measurement system among intelligent aquaponics production management modules for optimal growth environment derivation and quantitative production prediction by converging various ICT technologies into existing aquaponics systems. In particular, the focus is on designing systems suitable for production sites that do not have high-performance processing resources, and we propose a module configuration plan for production environments and training data and prediction systems.

  • PDF

Prediction of Cohesive Sediment Transport and Flow Resistance Around Artificial Structures of the Beolgyo Stream Estuary

  • Cho, Young-Jun;Hwang, Sung-Su;Park, Il-Heum;Choi, Yo-Han;Lee, Sang-Ho;Lee, Yeon-Gyu;Kim, Jong-Gyu;Shin, Hyun-Chool
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.167-181
    • /
    • 2010
  • To predict changes in the marine environment of the Beolgyo Stream Estuary in Jeonnam Province, South Korea, where cohesive tidal flats cover a broad area and a large bridge is under construction, this study conducted numerical simulations involving tidal flow and cohesive sediment transport. A wetting and drying (WAD) technique for tidal flats from the Princeton Ocean Model (POM) was applied to a large-scale-grid hydrodynamic module capable of evaluating the flow resistance of structures. Derivation of the eddy viscosity coefficient for wakes created by structures was accomplished through the explicit use of shear velocity and Chezy's average velocity. Furthermore, various field observations, including of tide, tidal flow, suspended sediment concentrations, bottom sediments, and water depth, were performed to verify the model and obtain input data for it. In particular, geologic parameters related to the evaluation of settling velocity and critical shear stresses for erosion and deposition were observed, and numerical tests for the representation of suspended sediment concentrations were performed to determine proper values for the empirical coefficients in the sediment transport module. According to the simulation results, the velocity variation was particularly prominent around the piers in the tidal channel. Erosion occurred mainly along the tidal channels near the piers, where bridge structures reduced the flow cross section, creating strong flow. In contrast, in the rear area of the structure, where the flow was relatively weak due to the formation of eddies, deposition and moderated erosion were predicted. In estuaries and coastal waters, changes in the flow environment caused by artificial structures can produce changes in the sedimentary environment, which in turn can affect the local marine ecosystem. The numerical model proposed in this study will enable systematic prediction of changes to flow and sedimentary environments caused by the construction of artificial structures.

A Strategic Approach to Construction of a Course Module for Innovative Product Design and Development (혁신제품개발 교육과정 개발을 위한 전략수립 방법)

  • Jung, Ki-Hyo;Chang, Jun-Ho;Lee, Won-Sup;Chang, Joon-Ho;You, Hee-cheon;Chang, Soo-Y.;Jun, Chi-Hyuck
    • Journal of Engineering Education Research
    • /
    • v.11 no.3
    • /
    • pp.5-11
    • /
    • 2008
  • Far greater than ever before is the present industrial demand for skilled professionals in innovative product design and development. Yet there is an apparent lack of a sufficient curricular provision for training design professionals in almost all engineering schools. The present study is to propose a systematic procedure for developing a strategy for building an innovative product design curriculum and demonstrate its application. The procedure consists of three major steps: strategic element derivation, task formulation, and task execution roadmap construction. The proposed procedure was applied to develop a modular curriculum (a cluster of several related courses) covering various subjects in relation to innovative product design and development. The procedure seems quite effective and useful for developing a curriculum that is strategically well differentiated based on the unique characteristics of a particular educational institute and its applicability seems not limited to a specific domain.