• Title/Summary/Keyword: deductive proofs

Search Result 9, Processing Time 0.019 seconds

FACTORS INFLUENCING STUDENTS' PREFERENCES ON EMPIRICAL AND DEDUCTIVE PROOFS IN GEOMETRY (중학생의 경험적 증명과 연역적 증명에 대한 선호 요인 분석)

  • Park, Gwi-Hee;Yoon, Hyun-Kyoung;Cho, Ji-Young;Jung, Jae-Hoon;Kwon, Oh-Nam
    • Communications of Mathematical Education
    • /
    • v.24 no.2
    • /
    • pp.325-344
    • /
    • 2010
  • The purpose of this study is to investigate what influences students' preferences on empirical and deductive proofs and find their relations. Although empirical and deductive proofs have been seen as a significant aspect of school mathematics, literatures have indicated that students tend to have a preference for empirical proof when they are convinced a mathematical statement. Several studies highlighted students'views about empirical and deductive proof. However, there are few attempts to find the relations of their views about these two proofs. The study was conducted to 47 students in 7~9 grades in the transition from empirical proof to deductive proof according to their mathematics curriculum. The data was collected on the written questionnaire asking students to choose one between empirical and deductive proofs in verifying that the sum of angles in any triangles is $180^{\circ}$. Further, they were asked to provide explanations for their preferences. Students' responses were coded and these codes were categorized to find the relations. As a result, students' responses could be categorized by 3 factors; accuracy of measurement, representative of triangles, and mathematics principles. First, the preferences on empirical proof were derived from considering the measurement as an accurate method, while conceiving the possibility of errors in measurement derived the preferences on deductive proof. Second, a number of students thought that verifying the statement for three different types of triangles -acute, right, obtuse triangles - in empirical proof was enough to convince the statement, while other students regarded these different types of triangles merely as partial examples of triangles and so they preferred deductive proof. Finally, students preferring empirical proof thought that using mathematical principles such as the properties of alternate or corresponding angles made proof more difficult to understand. Students preferring deductive proof, on the other hand, explained roles of these mathematical principles as verification, explanation, and application to other problems. The results indicated that students' preferences were due to their different perceptions of these common factors.

A Study on Teaching How to Draw Auxiliary Lines in Geometry Proof (보조선 지도법 연구)

  • Yim, Jae-Hoon;Park, Kyung-Mee
    • School Mathematics
    • /
    • v.4 no.1
    • /
    • pp.1-13
    • /
    • 2002
  • The purpose of this study is to investigate the reasons and backgrounds of drawing auxiliary lines in the proof of geometry. In most of proofs in geometry, drawing auxiliary lines provide important clues, thus they play a key role in deductive proof. However, many student tend to have difficulties of drawing auxiliary lines because there seems to be no general rule to produce auxiliary lines. To alleviate such difficulties, informal activities need to be encouraged prior to draw auxiliary lines in rigorous deductive proof. Informal activities are considered to be contrasting to deductive proof, but at the same time they are connected to deductive proof because each in formal activity can be mathematically represented. For example, the informal activities such as fliping and superimposing can be mathematically translated into bisecting line and congruence. To elaborate this idea, some examples from the middle school mathematics were chosen to corroborate the relation between informal activities and deductive proof. This attempt could be a stepping stone to the discussion of how to teach auxiliary lines and deductive reasoning.

  • PDF

시각화를 이용한 증명교육

  • Kang, Mee-Kwang;Kim, Myung-Jee
    • East Asian mathematical journal
    • /
    • v.24 no.5
    • /
    • pp.527-545
    • /
    • 2008
  • One of the education purpose of the section "Figures" in the eighth grade is to develop students' deductive reasoning ability, which is basic and essential for living in a democratic society. However, most or middle school students feel much more difficulty or even frustration in the study of formal arguments for geometric situations than any other mathematical fields. It is owing to the big gap between inductive reasoning in elementary school education and deductive reasoning, which is not intuitive, in middle school education. Also, it is very burden for students to describe geometric statements exactly by using various appropriate symbols. Moreover, Usage of the same symbols for angle and angle measurement or segments and segments measurement makes students more confused. Since geometric relations is mainly determined by the measurements of geometric objects, students should be able to interpret the geometric properties to the algebraic properties, and vice verse. In this paper, we first compare and contrast inductive and deductive reasoning approaches to justify geometric facts and relations in school curricula. Convincing arguments are based on experiment and experience, then are developed from inductive reasoning to deductive proofs. We introduce teaching methods to help students's understanding for deductive reasoning in the textbook by using stepwise visualization materials. It is desirable that an effective proof instruction should be able to provide teaching methods and visual materials suitable for students' intellectual level and their own intuition.

  • PDF

A study of the types of students' justification and the use of dynamic software (학생들의 정당화 유형과 탐구형 소프트웨어의 활용에 관한 연구)

  • 류희찬;조완영
    • Journal of Educational Research in Mathematics
    • /
    • v.9 no.1
    • /
    • pp.245-261
    • /
    • 1999
  • Proof is an essential characteristic of mathematics and as such should be a key component in mathematics education. But, teaching proof in school mathematics have been unsuccessful for many students. The traditional approach to proofs stresses formal logic and rigorous proof. Thus, most students have difficulties of the concept of proof and students' experiences with proof do not seem meaningful to them. However, different views of proof were asserted in the reassessment of the foundations of mathematics and the nature of mathematical truth. These different views of justification need to be reflected in demonstrative geometry classes. The purpose of this study is to characterize the types of students' justification in demonstrative geometry classes taught using dynamic software. The types of justification can be organized into three categories : empirical justification, deductive justification, and authoritarian justification. Empirical justification are based on evidence from examples, whereas deductive justification are based logical reasoning. If we assume that a strong understanding of demonstrative geometry is shown when empirical justification and deductive justification coexist and benefit from each other, then students' justification should not only some empirical basis but also use chains of deductive reasoning. Thus, interaction between empirical and deductive justification is important. Dynamic geometry software can be used to design the approach to justification that can be successful in moving students toward meaningful justification of ideas. Interactive geometry software can connect visual and empirical justification to higher levels of geometric justification with logical arguments in formal proof.

  • PDF

Students' attitudes toward learning proofs and learning proofs with GSP (증명학습에 대한 학생들의 성향과 GSP를 활용한 증명학습)

  • Han, Hye-Suk;Shin, Hyun-Sung
    • Journal of the Korean School Mathematics Society
    • /
    • v.11 no.2
    • /
    • pp.299-314
    • /
    • 2008
  • The purposes of this study were to investigate what attitudes students have toward learning proofs and what difficulties they have in learning proofs, and to examine how the use of dynamic geometry software, the Geometer's Sketchpad, helps students' proof learning. The study involved 117 9th graders in 2 high schools. According to questionnaire data, over 50 percent of the total respondents(116) indicated negative attitudes toward learning proofs, on the other hand, only 16 percent of the total respondents indicated positive attitudes toward the learning. Memorizing and remembering many kinds of theorems, definitions, and postulates to use in proving statements was the most difficult part in learning proofs, which the largest proportion of the total respondents indicated. The study found that the use of the Geometer's Sketchpad played positive roles in developing students' understanding of proofs and stimulating students' interests in learning proofs.

  • PDF

A study on mathematical justification activities in elementary school (초등학생의 수학적 정당화에 관한 연구)

  • 권성룡
    • Education of Primary School Mathematics
    • /
    • v.7 no.2
    • /
    • pp.85-99
    • /
    • 2003
  • In this paper, firstly examined various proofs types that cover informal empirical justifications by Balacheff, Miyazaki, and Harel & Sowder and Tall. Using these theoretical frameworks, justification activities by 5th graders were analyzed and several conclusions were drawn as follow: 1) Children in 5th grade could justify using various proofs types and method ranged from external proofs schemes by Harel & Sowder to thought experiment by Balacheff This implies that children in elementary school can justify various mathematical statements of ideas for themselves. To improve children's proving abilities, rich experience for justifying should be provided. 2) Activities that make conjectures from cases then justify should be given to students in order to develop a sense of necessity of formal proof. 3) Children have to understand the meaning and usage of mathematical symbol to advance to formal deductive proofs. 4) New theoretical framework is needed to be established to provide a framework for research on elementary school children's justification activities. Research on proof mainly focused on the type of proof in terms of reasoning and activities involved. But proof types are also influenced by the tasks given. In elementary school, tasks that require physical activities or examples are provided. To develop students'various proof types, tasks that require various justification methods should be provided. 5) Children's justification type were influenced not only by development level but also by the concept they had. 6) Justification activities provide useful situation that assess students'mathematical understanding. 7) Teachers understanding toward role of proof(verification, explanation, communication, discovery, systematization) should be the starting point of proof activities.

  • PDF

How to develop the ability of proof methods?

  • Behnoodi, Maryam;Takahashi, Tadashi
    • Research in Mathematical Education
    • /
    • v.13 no.3
    • /
    • pp.217-233
    • /
    • 2009
  • The purpose of this study is to describe how dynamic geometry systems can be useful in proof activity; teaching sequences based on the use of dynamic geometry systems and to analyze the possible roles of dynamic geometry systems in both teaching and learning of proof. And also dynamic geometry environments can generate powerful interplay between empirical explorations and formal proofs. The point of this study was to show that how using dynamic geometry software can provide an opportunity to link between empirical and deductive reasoning, and how such software can be utilized to gain insight into a deductive argument.

  • PDF

Using DGE for Recognizing the Generality of Geometrical Theorems (기하 정리의 일반성 인식을 위한 동적기하환경의 활용)

  • Chang, Hyewon;Kang, Jeong-Gi
    • Journal of Educational Research in Mathematics
    • /
    • v.23 no.4
    • /
    • pp.585-604
    • /
    • 2013
  • This study is based on the problem that most middle school students cannot recognize the generality of geometrical theorems even after having proved them. By considering this problem from the point of view of empirical verification, the particularity of geometrical representations, and the role of geometrical variables, we suggest that some experiences in dynamic geometry environment (DGE) can help students to recognize the generality of geometrical theorems. That is, this study aims to observe students' cognitive changes related to their recognition of the generality and to provide some educational implications by making students experience some geometrical explorations in DGE. To do so, we selected three middle school students who couldn't recognize the generality of geometrical theorems although they completed their own proofs for the theorems. We provided them exploratory activities in DGE, and observed and analyzed their cognitive changes. Based on this analysis, we discussed the effects of DGE on studensts' recognition of the generality of geometrical theorems.

  • PDF

An Analysis of Justification Process in the Proofs by Mathematically Gifted Elementary Students (수학 영재 교육 대상 학생의 기하 인지 수준과 증명 정당화 특성 분석)

  • Kim, Ji-Young;Park, Man-Goo
    • Education of Primary School Mathematics
    • /
    • v.14 no.1
    • /
    • pp.13-26
    • /
    • 2011
  • The purpose of this research is to analyze geometrical level and the justification process in the proofs of construction by mathematically gifted elementary students. Justification is one of crucial aspect in geometry learning. However, justification is considered as a difficult domain in geometry due to overemphasizing deductive justification. Therefore, researchers used construction with which the students could reveal their justification processes. We also investigated geometrical thought of the mathematically gifted students based on van Hieles's Theory. We analyzed intellectual of the justification process in geometric construction by the mathematically gifted students. 18 mathematically gifted students showed their justification processes when they were explaining their mathematical reasoning in construction. Also, students used the GSP program in some lessons and at home and tested students' geometric levels using the van Hieles's theory. However, we used pencil and paper worksheets for the analyses. The findings show that the levels of van Hieles's geometric thinking of the most gifted students were on from 2 to 3. In the process of justification, they used cut and paste strategies and also used concrete numbers and recalled the previous learning experience. Most of them did not show original ideas of justification during their proofs. We need to use a more sophisticative tasks and approaches so that we can lead gifted students to produce a more creative thinking.