A Study on Teaching How to Draw Auxiliary Lines in Geometry Proof

보조선 지도법 연구

  • Published : 2002.03.30

Abstract

The purpose of this study is to investigate the reasons and backgrounds of drawing auxiliary lines in the proof of geometry. In most of proofs in geometry, drawing auxiliary lines provide important clues, thus they play a key role in deductive proof. However, many student tend to have difficulties of drawing auxiliary lines because there seems to be no general rule to produce auxiliary lines. To alleviate such difficulties, informal activities need to be encouraged prior to draw auxiliary lines in rigorous deductive proof. Informal activities are considered to be contrasting to deductive proof, but at the same time they are connected to deductive proof because each in formal activity can be mathematically represented. For example, the informal activities such as fliping and superimposing can be mathematically translated into bisecting line and congruence. To elaborate this idea, some examples from the middle school mathematics were chosen to corroborate the relation between informal activities and deductive proof. This attempt could be a stepping stone to the discussion of how to teach auxiliary lines and deductive reasoning.

Keywords