• Title/Summary/Keyword: dechlorination

Search Result 175, Processing Time 0.022 seconds

Dechlorination of the Fungicide Chlorothalonil by Zerovalent Iron and Manganese Oxides (Zerovalent Iron 및 Manganese Oxide에 의한 살균제 Chlorothalonil의 탈염소화)

  • Yun, Jong-Kuk;Kim, Tae-Hwa;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.1
    • /
    • pp.43-49
    • /
    • 2008
  • This study is conducted to determine the potential of zerovalent iron (ZVI), pyrolusite and birnessite to remediate water contaminated with chlorothalonil. The degradation rate of chlorothalonil by treatment of ZVI, pyrolusite and birnessite was much higher in low condition of pH. Mixing an aqueous solution of chlorothalonil with 1.0% (w/v) ZVI, pyrolusite and birnessite resulted in 4.7, 13.46 and 21.38 hours degradation half-life of chlorothalonil, respectively. Dechlorination number of chlorothalonil by treaonent of ZVI, pyrolusite and birnessite exhibited 2.85, 1.12 and 1.09, respectively. Degradation products of chlorothalonil by teartment of pyrolusite and birnessite were confirmed as trichloro-1,3-dicyanobenzene and dichloro-1,3-dicyanobenzene which were dechlorinated one and two chlorine atoms from parent chlorothalonil by GC-mass. Degradation products of chlorothalonil by ZVI were identified not only as those by pyrolusite and birnessite but as further reduced chloro-1,3-dicyanobenzene and chlorocyanobenzene.

Effects of NaOH and Humic Acid on the UV Photolysis of PCBs (PCBs의 광화학적 연구: NaOH 및 휴믹산 (humic acid, HA)에 의한 분해특성)

  • Shin, Hae Seung;Kim, Jae Hyoun
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.2
    • /
    • pp.147-156
    • /
    • 2014
  • Objectives: This study was carried out to examine whether the apparent photolysis with or without sensitizers [NaOH and humic acid (HA)] was prompted photodegradation of polychlorinated biphenyl (PCB) in aqueous solution. Methods: PCBs photodegradation occurred using fluorescence black lamps at ${\lambda}_{max}=300nm$. PCB congeners were exposed in 10 ppm HA or 0.05N NaOH solutions, to investigate the decreasing profile of PCB concentration with time. The PCBs were then analyzed by gas chromatography/mass spectrometry (GC-MS). Reductive degradation profile of PCB congeners in the presence of both sensitizers under oxygen-saturated protic conditions was described using the wind-rose diagrams. Results: Use of HA or NaOH decreased PCB concentration with time in the dark and on irradiation, indicating that photolysis underwent through reductive dechlorination through energy transfer and possibly with reactive oxygens. The dechlorination was marked by a chromatographic shift, observed in the GC-MS plots. Therefore it is logical to assume that increasing the dose of sensitizers would increase the photodegradation rates of PCBs. The half-lives of pentachloro-PCB (penta-3) in 0.05N NaOH and 10 ppm HA were estimated at about 47 hours and 39 hours, respectively, under the same experimental conditions of photolysis. It was found that the rate of photolysis of pentachloro-PCB in aqueous solution followed apparent first-order kinetics compared to other congeners. Conclusion: Photochemical degradation (using 328 nm UV light) of penta- and hexa-PCBs in HA or alkaline solution is a viable method for pretreatment method. The results are helpful for the further comprehension of the reaction mechanism for photolytic dechlorination of PCBs in aquatic system.

Structural Analysis of the fcbABC Gene Cluster Responsible for Hydrolytic Dechlorination of 4-Chlorobenzoate from pJS1 Plasmid of Comamonas sp. P08

  • Lee, Jeong-Soon;Lee, Kyoung;Ka, Jong-Ok;Jong-Chan;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.89-94
    • /
    • 2003
  • Bacterial strain No. P08 isolated from wastewater at the Cheongju industrial complex was found to be capable of degrading 4-chlorobenzoate under aerobic condition. P08 was identified as Comamonas sp. from its cellular fatty acid composition and 16S rDNA sequence. The fcb genes, responsible for the hydrolytic dechlorination of 4-chlorobenzoate, were cloned from the plasmid pJJl of Comamonas sp. P08. The fcb gene cluster of comamonas sp. PO8 was organized in the order fcbB-fcbA-fcbTl-fcbT2-fcbT3-fcbC. This organization of the fcb genes was very similar to that of the fcb genes carried on the chromosomal DNA of pseudomonas sp. DJ-12. However, it differed from the fcbA-fcbB -fcbC ordering of Arthrobacter sp. SU. The nucleotide sequences of the fcbABC genes of strain P08 showed 98% and 53% identities to those of Pseudomonas sp. DJ-12 and Arthrobacter sp. SU, respectively. This suggests that the fcb genes might have been derived from Pseudomonas sp. DJ-12 to form plasmid pJSl in Comamonas sp. P08, or that the fcb genes in strain DJ-12 were transposed from Comamonas sp. P08 plasmid.

Dechlorination of Organochlorine Insecticide, Endosulfan by Zerovalent Iron (Zerovalent Iron에 의한 유기염소계 살충제 Endosulfan의 탈염소화)

  • Shin, Hyun-Su;Kim, Taek-Kyum;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.202-208
    • /
    • 2009
  • The dechlorination of endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine-3-oxide) and its metabolite, endosulfan sulfate via reaction with zerovalent iron under various pH conditions was studied using aqueous solution. The reaction products, which were probably produced from endosulfan and endosulfan sulfate by ZVI were identified by GC-MS. The lower the pH of reaction solution, the higher the transformation rate of endosulfan and endosulfan sulfate. The transformation rates of endosulfan and endosulfan sulfate in pH 3.0 by ZVI were 28% and 90% but those of endosulfan and endosulfan sulfate in mixture solution of water/acetone were 65% and 92%, respectively. The pH of reaction solution after ZVI treatment was increased to pH 10. Endosulfan was hydrolyzed at pH 10 but endosulfan sulfate was not hydrolyzed. Two unknown peaks were produced from endosulfan sulfate by treatment of ZVI. As a result of GC-MS analysis, unknown peaks were guessed to be structural isomer substituted hydrogen for chlorine.

Destruction and Removal of PCBs in Waste Transformer Oil by a Chemical Dechlorination Process

  • Ryoo, Keon-Sang;Byun, Sang-Hyuk;Choi, Jong-Ha;Hong, Yong-Pyo;Ryu, Young-Tae;Song, Jae-Seol;Lee, Dong-Suk;Lee, Hwa-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.520-528
    • /
    • 2007
  • A practical and efficient disposal of PCBs (polychlorinated biphenyls) in waste transformer oil by a chemical dechlorination process has been reported. The transformer oil containing commercial PCB mixtures (Aroclor 1242, 1254 and 1260) was treated by the required amounts of PEG 600 (polyethylene glycol 600), potassium hydroxide (KOH) and aluminum (Al), along with different reaction temperatures and times. The reaction of PEG with PCBs under basic condition produces arylpolyglycols, the products of nucleophilic aromatic substitution. The relative efficiencies of PCB treatment process were assessed in terms of destruction and removal efficiency (DRE, %). Under the experimental conditions of PEG600/KOH/Al/100 oC/2hr, average DRE of PCBs was approximately 78%, showing completely removal of PCBs containing 7-9 chlorines on two rings of biphenyl which appear later than PCB no. 183 (2,2',3,4,4',5',6-heptaCB) in retention time of GC/ECD. However, when increasing the reaction temperature and time to 150 oC and 240 min, average DRE of PCBs including the most toxic PCBs (PCB no. 77, 105, 118, 123 and 169) in PCB family reached 99.99% or better, with the exception of PCB no. 5 and 8 (2,3-diCB and 2,4'-diCB). In studying the reaction of PEG with PCBs, it confirmed that the process led to less chlorinated PCBs through a stepwise process with the successive elimination of chlorines. The process also permits complete recovery of treated transformer oil through simple segregating procedures.

Reduction Characteristics of Triclosan using Zero-valent Iron and Modified Zero-valent Iron (영가철 및 개질 영가철을 이용한 triclosan의 환원분해 특성)

  • Choi, Jeong-Hak;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.26 no.7
    • /
    • pp.859-868
    • /
    • 2017
  • In this study, the reductive dechlorination of triclosan using zero-valent iron (ZVI, $Fe^0$) and modified zero-valent iron (i.e., acid-washed iron (Aw/Fe) and palladium-coated iron (Pd/Fe)) was experimentally investigated, and the reduction characteristics were evaluated by analyzing the reaction kinetics. Triclosan could be reductively decomposed using zero-valent iron. The degradation rates of triclosan were about 50% and 67% when $Fe^0$ and Aw/Fe were used as reductants, respectively, after 8 h of reaction. For the Pd/Fe system, the degradation rate was about 57% after 1 h of reaction. Thus, Pd/Fe exhibited remarkable performance in the reductive degradation of triclosan. Several dechlorinated intermediates were predicted by GC-MS spectrum, and 2-phenoxyphenol was detected as the by-product of the decomposition reaction of triclosan, indicating that reductive dechlorination occurred continuously. As the reaction proceeded, the pH of the solution increased steadily; the pH increase for the Pd/Fe system was smaller than that for the $Fe^0$ and Aw/Fe system. Further, zero-order, first-order, and second-order kinetic models were used to analyze the reaction kinetics. The first-order kinetic model was found to be the best with good correlation for the $Fe^0$ and Aw/Fe system. However, for the Pd/Fe system, the experimental data were evaluated to be well fitted to the second-order kinetic model. The reaction rate constants (k) were in the order of Pd/Fe > Aw/Fe > $Fe^0$, with the rate constant of Pd/Fe being much higher than that of the other two reductants.

Screening of Zero-Valent Metal for the Removal of High Concentration PCE and 1,1,1 TCA (고농도 PCE 및 1,1,1 TCA 제거를 위한 영가금속 선정)

  • Kwon, Soo-Youl;Kim, Young
    • Journal of Wetlands Research
    • /
    • v.12 no.1
    • /
    • pp.23-31
    • /
    • 2010
  • Chlorinated aliphatic hydrocarbons (CAHs) such as tetrachloroethylene (PCE), 1,1,1-trichloroethane (1,1,1-TCA) are the contaminants most frequently found in soil and groundwater. They have a potential to be toxic to and persistent in environment. This study is focused on selection of zero-valent metal and ores for the removal of high concentration PCE or 1,1,1-TCA and mixture of two compound. For the screening of suitable metals, we measured dechlorination rate, removal capacities and economics by using batch reactor test. This results suggest that removal rate and dechlorination of high quality iron and zinc are higher than slag and nature ores like zinc and manganese. Among nature ores, zinc ores(64% purity) have highest removal capacities. And in economics zinc ores is 10 times better than high quality metal tested. We conclude zinc ore is most suitable metal for the removal of PCE or 1,1,1-TCA.

Degradation Patterns of Orgaonophosphorus Insecticide, Chlorpyrifos by Functionalized Zerovalent Iron (기능화된 Zerovalent Iron에 의한 유기인계 살충제 Chlorpyrifos의 분해 특성)

  • Kim, Dai-Hyeon;Choi, Choong-Lyeal;Kim, Tae-Hwa;Park, Man;Kim, Jang-Eok
    • Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.321-326
    • /
    • 2007
  • An organophosphorus insecticide, chlorpyrifos, has been of a great concern due to persistence, toxicity and accumulation in soils and groundwaters. This study deals with degradation efficiency and dechlorination kinetics of chlorpyrifos by various types of zerovalent irons (ZVIs) for effective remediation of the soils contaminated with chlorinated pesticides. Chlorpyrifos degradation rate was increased with increasing ZVI treatment amount and reaction time. The degradation rate and dechlorination kinetics of chlorpyrifos increased in the order of mZVI > nZVI > cZVI in solutions and soils. Dechlorination number value of chlorpyrifos by cZVI, nZVI and mZVI treatment exhibited 1.08, 3.09 and 3.18, respectively. In soils, degradation efficiency and kinetics of chlorpyrifos significantly were affected by moisture content because of the limited contact between ZVIs and chlorpyrifos. These results suggest that nanosized and functionalized mZVI could be effectively applied to degradation of chlorinated pesticides in the soil and aqueous environments.

Trichloroethylene (TCE) Removal Capacity of Synthesized Calcium Sulfoaluminate Minerals in Hydrated Cement-based Materials (합성 Calcium Sulfoaluminate계 시멘트 수화물의 Trichloroethylene (TCE) 제거능)

  • Ha, Min-Gyu;Ghorpade, Praveen A.;Kim, Jeong-Joo;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1463-1469
    • /
    • 2013
  • Portland cement used as binding material in combination of ferrous iron for reductive dechlorination of chlorinated organics is already widely studied topic by several researchers. However there is no clear evidence about the component solely responsible in cement for trichloroethylene (TCE) dechlorination. Many researchers suspect that the ettringite, monosulfate phases associated with hydration of cement are responsible active agents for TCE dechlorination. This study deals with synthesizing different pure crystalline minerals like ettringite and monosulfate phases of cement hydration and check individual phase's TCE dechlorinating capacity in combination with ferrous iron. The results indicated that the synthesized minerals showed no reduction capacity for TCE. The findings in the present study is significant as it shows that ettringite and monosulfate phases which were suspected minerals by previous researchers for TCE dechlorination are not reactive. Hence it is suspected that some other mineral or mineral form in cement phase could be responsible for TCE degradation.

Analysis of Microbial Community During the Anaerobic Dechlorination of Tetrachloroethylene (PCE) in Stream of Gimpo and Inchon Areas (경기도 김포, 인천 서구지역 소하천의 PCE 탈염소화 군집의 선별 및 다양성 분석)

  • Kim, Byung-Hyuk;Baek, Kyung-Hwa;Cho, Dea-Hyun;Sung, Youl-Boong;Ahn, Chi-Yong;Oh, Hee-Mock;Koh, Sung-Cheol;Kim, Hee-Sik
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.140-147
    • /
    • 2009
  • In this study, anaerobic enrichment cultivation was performed with the sediments from the Gimpo and Inchon areas. Lactate as an electron donor and PCE as an electron acceptor was injected into the serum bottle with an anaerobic medium. After the incubation of 8 weeks, the reductive dechlorination of PCE was observed in 7 sites among 16 sites (43%). Three enrichment cultures showed completely dechlorination of PCE to ethene, while four enrichment culture showed transformation of PCE to cis-DCE. The bacterial community structure was analyzed by PCR-DGGE. Dechlorinating bacteria were detected by species-specific primers. The dominant species in seven anaerobic enrichments were found to belong to the genus of Dehalococcoides sp. and Geobacter sp., and Dehalobacter sp.