Browse > Article

Degradation Patterns of Orgaonophosphorus Insecticide, Chlorpyrifos by Functionalized Zerovalent Iron  

Kim, Dai-Hyeon (Division of Applied Biology and Chemistry, Kyungpook National University)
Choi, Choong-Lyeal (Division of Applied Biology and Chemistry, Kyungpook National University)
Kim, Tae-Hwa (Division of Applied Biology and Chemistry, Kyungpook National University)
Park, Man (Division of Applied Biology and Chemistry, Kyungpook National University)
Kim, Jang-Eok (Division of Applied Biology and Chemistry, Kyungpook National University)
Publication Information
Applied Biological Chemistry / v.50, no.4, 2007 , pp. 321-326 More about this Journal
Abstract
An organophosphorus insecticide, chlorpyrifos, has been of a great concern due to persistence, toxicity and accumulation in soils and groundwaters. This study deals with degradation efficiency and dechlorination kinetics of chlorpyrifos by various types of zerovalent irons (ZVIs) for effective remediation of the soils contaminated with chlorinated pesticides. Chlorpyrifos degradation rate was increased with increasing ZVI treatment amount and reaction time. The degradation rate and dechlorination kinetics of chlorpyrifos increased in the order of mZVI > nZVI > cZVI in solutions and soils. Dechlorination number value of chlorpyrifos by cZVI, nZVI and mZVI treatment exhibited 1.08, 3.09 and 3.18, respectively. In soils, degradation efficiency and kinetics of chlorpyrifos significantly were affected by moisture content because of the limited contact between ZVIs and chlorpyrifos. These results suggest that nanosized and functionalized mZVI could be effectively applied to degradation of chlorinated pesticides in the soil and aqueous environments.
Keywords
Zerovalent iron; Chlorpyrifos; Degradation; Dechlorination;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Mohan, S. V., Sirisha, K., RaO, N. C., Sarma, P. N. and Reddy, S. J. (2004) Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: bioprocess monitoring. J. Hazard. Mater. B. 116, 39-48   DOI   ScienceOn
2 Bending, G. D., Friloux, M. and Walker, A. (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic petential. Microbiology letters. 212, 59-63   DOI
3 Yu, J. J. (2002) Removal of organophosphate pesticides from wastewater by supercritical carbon dioxide extraction. Water Research. 36, 1095-1101   DOI   ScienceOn
4 Matheson, L. J and Tratnyek, P. G, (1994) Reductive dehalogenation of chlorinated Methanes by iron metal. Envirion. Sci. Technol. 28, 2045-2053   DOI   ScienceOn
5 Keum, Y. S. and Qing, X. Li. (2004) Reduction of nitroaromatic pesticides with zerovalent iron. Chemosphere. 54, 255-263   DOI   ScienceOn
6 Scherer M. M., Richter, S., Valentine, R. L. and Alvare, P. J. (2000) Chemistry and microbiology of reactive barriers for in situ ground-electride. Environ. Sci. Technol. 31, 363-411
7 Shea, P. J., Machacek, T. A. and Comfort S. D. (2004) Accelerated remediation of pesticide-contaminated soil with zerovalent iron. Environmental Pollution. 132, 183-188   DOI   ScienceOn
8 Gordon C. C. Y. and Lee, H. L. (2005) Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Research. 39, 884-894   DOI   ScienceOn
9 Kale, S. P., Carvalho, F. P., Raghu, K., Sherkhane, P. D., Pandit, G. G. and Rao, A. M. (1999) Studies on degradation of $^{14}C$-chlorpyrifos in the marine environment. Chemosphere. 39, 969-976   DOI   ScienceOn
10 Singh, J., Comfort, S. D. and Shea, P. J. (1998) Remediating RDX-contaminated water and soil using zerovalent iron. Environ. Qual. 27, 1240-1245
11 Li, Q. W., Guo, Y. H. and Hu, G. W. (2005) Nanosize and bimodal porous polyoxotungstate-anatase $TiO_2$ composites: Preparation and photocatalytic degradation of organophosphorus pesticide using visible-light excitation. Microporous and Mesoporous Materials. 87, 1-9   DOI   ScienceOn
12 Han, L. B., Choi, N. and Tanaka, M. (1997) The first example of facile oxidative addition of carbon-tellurium bonds to zerovalent Pt, Pd, and Ni complexes. J. Am. Chem. Soc. 119, 1795- 1796   DOI   ScienceOn
13 Robertson, L. N., Chandler, K. J., Stickley, B. D. A., Cocco, R. F. and Ahmetagic, M. (1998) Enhanced microbial degradation implicated in rapid loss of chlorpyrifos from the controlledrelease formulation suSCCom Blue in soil. Crop Protection. 17, 29-33   DOI   ScienceOn
14 Shin, H. S. (2002) Dechlorination of organochlorine insecticide endosulfan by zerovalent iron. M. S. Thesis, Kyungpook National University
15 Glavee, G. N., Klabunde, K. J., Sorensen, C. M. and Hadlipanayis, G. C. (1995) Chemistry of borohydride reduction of iron (II) and iron (III) ions in aqueous and nonaqueous mediaformation of nanoscale Fe0, FeB, and Fe2B powders. Inorg. Chem. 34, 28-35   DOI   ScienceOn
16 Choi, C. L., Park, M., Lee, D. H., Rhee I. K., Song, K. S., Kang, S. J. and Kim, J. E. (2006) Degradation of chlorothalonil by zerovalent iron-montmorillonite complex. Kor. J. Environ.Agri. 25, 257-261   과학기술학회마을   DOI
17 Agrawal, A. and Reatnyek, P. G. (1996) Reduction of nitro aromatic compounds by zerovalent iron metal. Environ. Sci. Technol. 30, 153-160   DOI   ScienceOn
18 Hernandez, J., Robledo, N. R. Velasco, L., Quintero, R. Pickard, M. A. and Duhalt, R. V. (1998) Chloroperoxidasemediated oxidation of organophosphorus pesticides. Pesticide biochemistry and physiology. 61, 87-94   DOI   ScienceOn
19 Francis, F. L., Vidal, M. L. and Budzinski, H. (1998) Modelling biological efficacy decrease and rate of degradation of chlorpyrifos-methyl on wheat stored under controlled conditions. J. Stored Products Research. 34, 341-354   DOI   ScienceOn
20 Manclus J. J. and Montoya, A. (1995) Development of immunoassays for the analysis of chlorpyrifos and its major metabolite 3,5,6-trichloro-2-pyridinol in the aquatic environment. Analytica Chemical Acta. 311, 341-348   DOI   ScienceOn
21 Liao, C. H., Kang, S. F. and Hsu, Y. W. (2003) Zero-valent iron reduction of nitrate in the presence of ultraviolet light, organic matter and hydrogen peroxide. Water Research. 37, 4109-4118   DOI   ScienceOn
22 Newcomb, R. D., Campbell, P. M., Russell, R. J. and Oakeshott, J. G. (1997) cDNA cloning, baculovirus-expression and kinetic properities of the esterase, E3, involved in organophosphorus resistance in Lucilia cuprina. Insect Biochem. Molec. Biol. 27, 15-25   DOI   ScienceOn
23 White, N. D. G., Jayas, D. S. and Demianyk, C. J. (1997) Degradation and biological impact of chlorpyrifos-methyl on stored wheat and pirimiphos-methyl on stored maize in western Canada. J. Stored Products Research. 33, 125-135   DOI   ScienceOn
24 Joo, S. H., Feitz, A. J., Sedlak, D. L. and Waite, T. D. (2005) Quantification of the oxidizing capacity of nanoparticulate zerovalent iron. Environ. Sci. Technol., 39, 1263-1268   DOI   ScienceOn
25 Liu, B., McConnell, L. L. and Torrents, A. (2001) Hydrolysis of chlorpyrifos in natural waters of the Chesapeake Bay. Chemosphere. 44, 1315-1323   DOI   ScienceOn
26 Liao, C. J., Chung, T. L., Chen, W. L. and Kuo, S. L. (2007) Treatment of pentachlorophenol-contaminated soil using nanoscale zero-valent iron with hydrogen peroxide. J. Molecular Catalysis A: Chemical. 265, 189-194   DOI   ScienceOn
27 Zhang, W. X. (2003) Nano scale iron particles for environmental remediation: an overview. J. Nanopart. Res. 5, 323-332   DOI   ScienceOn
28 Heng, J. and Webster, G. R. (1997) Persistence, penetration, and surface availability of chlorpyrifos, its oxon, and 3,5,6- trichloro-2-pyridinol in Elm bark. J. Agric. Food Chem. 45, 4871-4876   DOI   ScienceOn
29 Bayer, P. and Finkel, M. (2005) Modelling of sequential groundwater treatment with zero valent iron and granular activated carbon, J. Contaminant Hydrology. 78, 129-146   DOI   ScienceOn