Dechlorination of the Fungicide Chlorothalonil by Zerovalent Iron and Manganese Oxides

Zerovalent Iron 및 Manganese Oxide에 의한 살균제 Chlorothalonil의 탈염소화

  • Yun, Jong-Kuk (Division of Applied Biology and Chemistry, Kyungpook National University) ;
  • Kim, Tae-Hwa (Division of Applied Biology and Chemistry, Kyungpook National University) ;
  • Kim, Jang-Eok (Division of Applied Biology and Chemistry, Kyungpook National University)
  • 윤종국 (경북대학교 응용생물화학부) ;
  • 김태화 (경북대학교 응용생물화학부) ;
  • 김장억 (경북대학교 응용생물화학부)
  • Published : 2008.03.31

Abstract

This study is conducted to determine the potential of zerovalent iron (ZVI), pyrolusite and birnessite to remediate water contaminated with chlorothalonil. The degradation rate of chlorothalonil by treatment of ZVI, pyrolusite and birnessite was much higher in low condition of pH. Mixing an aqueous solution of chlorothalonil with 1.0% (w/v) ZVI, pyrolusite and birnessite resulted in 4.7, 13.46 and 21.38 hours degradation half-life of chlorothalonil, respectively. Dechlorination number of chlorothalonil by treaonent of ZVI, pyrolusite and birnessite exhibited 2.85, 1.12 and 1.09, respectively. Degradation products of chlorothalonil by teartment of pyrolusite and birnessite were confirmed as trichloro-1,3-dicyanobenzene and dichloro-1,3-dicyanobenzene which were dechlorinated one and two chlorine atoms from parent chlorothalonil by GC-mass. Degradation products of chlorothalonil by ZVI were identified not only as those by pyrolusite and birnessite but as further reduced chloro-1,3-dicyanobenzene and chlorocyanobenzene.

Arylnitrile계 살균제인 chlorothalonil의 탈염소화를 촉진시키기 위하여 금속촉매인 zerovalent iron(ZVI) 및 manganese oxide(pyrolusite 및 birnessite)를 수중 처리하여 pH에 따른 chlorothalonil의 분해정도, 탈염소화 그리고 분해산물의 구조를 조사하였다. ZVI, pyrolusite 및 birnessite를 처리하였을 경우 PH가 낮을수록 chlorothalonil의 분해효율은 높게 나타났다. pH 5.0에서 ZVI, pyrolusite 및 birnessite를 각각 1.0%(v/w) 처리하였을 때 chlorothalonil의 분해반감기는 ZVI 4.7시간, pyrolusite 13.46시간 및 birnessite 21.38시간으로 나타났다. Chlorothalonil의 탈염소화 정도를 나타내는 D/N value의 평균값은 ZVI, pyrolusite 및 birnessite를 처리하였을 경우 각각 2.85, 1.12 및 1.09 이었다. Chlorothalonil의 분해산물은 GC-MS를 이용하여 분석한 결과 pyrolusite와 birnessite에 의해 chloride ion이 하나 이탈된 trichloro-1,3-dicyanobenzene과 둘 이탈된 dichloro-1,3-dicyanobenzene으로 확인되었으며, ZVI에 의한 분해산물은 pyrolusite, birnessite의 분해산물과 동일한 trichloro-1,3-dicyanobenzene, dichloro-1,3-dicyanobenzene을 비롯하여 환원이 더 진행된 chloro-1,3-dicyanobenzene과 chlorocyanobenzene으로 확인되었다.

Keywords

References

  1. Chen, J. L., S. R. Al-Abed, J. A. Ryan and Z. Li (2001) Effects of pH on dechlorination of trichloroethylene by zero-valent iron, J. of Hazardous Materials B83:243-254
  2. Dirk, S., R. Kober and A. Dahmke (2003) Competing TCE and cis-DCE degradation kinetics by zero valent iron-experimental results and numerical simulation, J. of Contaminant Hydrology 19(12):1-20
  3. Dombek, T., E. Dolan, J. Scfultz and D. Kiarup (2001) Rapid reductive dechlorination of atrazine by zero valent iron under acidic conditions, Enviroumental pollution 111:21-27 https://doi.org/10.1016/S0269-7491(00)00033-6
  4. Doong, R. A. and Y. L. Lai (2006) Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron, Chemosphere 64:371-378 https://doi.org/10.1016/j.chemosphere.2005.12.038
  5. Doong, R. A. and Y. J. Lai (2005) Dechlorination of tetrachloroethylene by palladized iron in the presence of humic acid, Water Research 39:2309-2318 https://doi.org/10.1016/j.watres.2005.04.036
  6. Kim, J. S., J. W. Park, S. E. Lee and J. E. Kim (2002) Formation of bound residue of 8-hydroxybentazone by oxidoreductive catalysts in soil, J. Agric. Food Chem. 50:3507-3511 https://doi.org/10.1021/jf011504z
  7. Kim, J. S., Patrick J. Shea, Jae E. Yang and J. E. Kim (2007) Halide salts accelerate degradation of high explosives by zerovalent iron, Environmental Pollution 147(3):634-641 https://doi.org/10.1016/j.envpol.2006.10.010
  8. Litchfield, M. H. (1996) Environmental Health Criteria 183 Chlorothalonil, World Health Organization, Geneva
  9. Marcos, A. C. and J. Y. Shin (1998) Atrazine dealkylation on a manganese oxide surface, Colloids and Surfaces 137:267-273 https://doi.org/10.1016/S0927-7757(97)00368-3
  10. Matheson, L. J. and P. G. Tratnyek (1994) Reductive dehalogenation of chlorinated methanes by iron metal, ?Environ. Sci. Technol. 28(12):2045-2053 https://doi.org/10.1021/es00061a012
  11. Mckenzie, R. M. (1971) The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese, Mineral Mag. 38:493-502 https://doi.org/10.1180/minmag.1971.038.296.12
  12. Miessler, Gary L. (2004) Inorganic chemistry, Upper Saddle River, N. J. Prentice Hall, USA
  13. Park, J. W., S. E. Lee, I. K. Rhee and J. E. Kim (2002) Transformation of the fungicide chlorothalonil by Fenton reagent, J. Agric. Food Chem. 50(26):7570-7575 https://doi.org/10.1021/jf025772o
  14. Raghuraman, V. (2002) Kinetics models for trichloroethylene transformation by zerovalent iron, Applied Catalysis B, Environmetal 37:139-159 https://doi.org/10.1016/S0926-3373(01)00332-0
  15. Singh, J., P. J. Shea, L. S. Hundal, S. D. Comfort, T. C. Zhang and D. S. Hage (1998) Iron-enhanced remediation of water and soil containing atrazine, Weed Science 46:381-388
  16. Tomlin, C. D. S. (2006) The Pesticide Manual, 14th ed., British Crop Protection Council, UK. pp.180-182
  17. Zhang, H. and C. H. Huang (2003) Oxidative transformation of triclosan and chlorophene by maganese oxides, Environ. Sci. Technol. 37:2421-2430 https://doi.org/10.1021/es026190q
  18. 김대현, 최충렬, 김태화, 박만, 김장억 (2007) 기능화된 Zerovalent Iron에 의한 유기인계 살충제 Chlorpyrifos의 분해 특성. J. Korean Soc. Appl. Biol. Chem. 50(4):321-326
  19. 김영훈, 고석오, 유희찬 (2002) 영가 철($Fe^{\circ}$)에 의한 사염화탄소와 크롬의 동시제거 효과. 대한환경공학회지 24(11):1949-1956
  20. 박종우, 이윤기, 김장억 (1999) 산화환원 촉매에 의한 Pentachlorophenol의 Transformation. 한국농화학회지 42(4):330-335
  21. 윤채혁 (1996) 농약총람. 도서출판 한림 pp. 246-250
  22. 이승우, 장덕진 (1998) O가 금속철을 이용한 Carbon Tetrachloride와 Penchlorethylene의 환원적 탈염소화. 대한환경공학회지 21:991-1002
  23. 정영호, 김장억, 김정한, 이영득, 임치환, 허장현 (1999) 최신농약학. 시그마프레스 pp. 3-7