DOI QR코드

DOI QR Code

Reduction Characteristics of Triclosan using Zero-valent Iron and Modified Zero-valent Iron

영가철 및 개질 영가철을 이용한 triclosan의 환원분해 특성

  • Choi, Jeong-Hak (Department of Environmental Engineering, Catholic University of Pusan) ;
  • Kim, Young-Hun (Department of Environmental Engineering, Andong National University)
  • 최정학 (부산가톨릭대학교 환경공학과) ;
  • 김영훈 (안동대학교 환경공학과)
  • Received : 2017.06.20
  • Accepted : 2017.07.20
  • Published : 2017.07.31

Abstract

In this study, the reductive dechlorination of triclosan using zero-valent iron (ZVI, $Fe^0$) and modified zero-valent iron (i.e., acid-washed iron (Aw/Fe) and palladium-coated iron (Pd/Fe)) was experimentally investigated, and the reduction characteristics were evaluated by analyzing the reaction kinetics. Triclosan could be reductively decomposed using zero-valent iron. The degradation rates of triclosan were about 50% and 67% when $Fe^0$ and Aw/Fe were used as reductants, respectively, after 8 h of reaction. For the Pd/Fe system, the degradation rate was about 57% after 1 h of reaction. Thus, Pd/Fe exhibited remarkable performance in the reductive degradation of triclosan. Several dechlorinated intermediates were predicted by GC-MS spectrum, and 2-phenoxyphenol was detected as the by-product of the decomposition reaction of triclosan, indicating that reductive dechlorination occurred continuously. As the reaction proceeded, the pH of the solution increased steadily; the pH increase for the Pd/Fe system was smaller than that for the $Fe^0$ and Aw/Fe system. Further, zero-order, first-order, and second-order kinetic models were used to analyze the reaction kinetics. The first-order kinetic model was found to be the best with good correlation for the $Fe^0$ and Aw/Fe system. However, for the Pd/Fe system, the experimental data were evaluated to be well fitted to the second-order kinetic model. The reaction rate constants (k) were in the order of Pd/Fe > Aw/Fe > $Fe^0$, with the rate constant of Pd/Fe being much higher than that of the other two reductants.

Keywords

References

  1. Blowes, D. W., Ptacek, C. J., Benner, S. G., McRae, C. W. T., Bennett, T. A., Puls, R. W., 2000, Treatment of inorganic contaminants using permeable reactive barriers, J. Contam. Hydrol., 45, 123-137. https://doi.org/10.1016/S0169-7722(00)00122-4
  2. Cao, J., Wei, L., Huang, Q., Wang, L., Han, S., 1999, Reducing degradation of azo dye by zero-valent iron in aqueous solution, Chemosphere, 38, 565-571. https://doi.org/10.1016/S0045-6535(98)00201-X
  3. Cheng, I. F., Fernando, Q., Korte, N., 1997, Electrochemical dechlorination of 4-chlorophenol to phenol, Environ. Sci. Technol., 31, 1074-1078. https://doi.org/10.1021/es960602b
  4. Choi, J. H., Choi, S. J., Kim, Y. H., 2008, Hydrodechlorination of 2,4,6-trichlorophenol for a permeable reactive barrier using zero-valent iron and catalyzed iron, Korean J. Chem. Eng., 25, 493-500. https://doi.org/10.1007/s11814-008-0083-5
  5. Choi, J. H., Kim, Y. H., 2009, Reduction of 2,4,6-trichlorophenol with zero-valent zinc and catalyzed zinc, J. Hazard. Mater., 166, 984-991. https://doi.org/10.1016/j.jhazmat.2008.12.004
  6. Choi, J. H., Kim, Y. H., Choi, S. J., 2007, Reductive dechlorination and biodegradation of 2,4,6-trichlorophenol using sequential permeable reactive barriers: Laboratory studies, Chemosphere, 67, 1551-1557. https://doi.org/10.1016/j.chemosphere.2006.12.029
  7. Choi, J. H., Shin, W. S., Choi, S. J., Kim, Y. H., 2009, Reductive denitrification using zero-valent iron and bimetallic iron, Environ. Technol., 30, 939-946. https://doi.org/10.1080/09593330902988729
  8. Crofton, K. M., Paul, K. B., De Vito, M. J., Hedge, J. M., 2007, Short term in vivo exposure to the water contaminant triclosan: Evidence for disruption of thyroxine, Environ. Toxicol. Pharmacol., 24, 194-197. https://doi.org/10.1016/j.etap.2007.04.008
  9. Dann, A. B., Hontela, A., 2011, Triclosan: Environmental exposure, toxicity and mechanisms of action, J. Appl. Toxicol., 31, 285-311. https://doi.org/10.1002/jat.1660
  10. Deng, N., Luo, F., Wu, F., Xiao, M., Wu, X., 2000, Discoloration of aqueous reactive dye solution in the $UV/Fe^0$ system, Water Res., 34, 2408-2411. https://doi.org/10.1016/S0043-1354(00)00099-3
  11. Federle, T. W., Kaiser, S. K., Nuck, B. A., 2002, Fate and effects of triclosan in activated sludge, Environ. Toxicol. Chem., 21, 1330-1337. https://doi.org/10.1002/etc.5620210702
  12. Fogler, H. S., 2001, Elements of chemical reaction engineering, 3rd ed., Prentice Hall Inc., New Jersey, 75-147.
  13. Ishibashi, H., Matsumura, N., Hirano, M., Matsuoka, M., Shiratsuchi, H., Ishibashi, Y., Takao, Y., Arizono, K., 2004, Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin, Aquat. Toxicol., 67, 167-179. https://doi.org/10.1016/j.aquatox.2003.12.005
  14. Johnson, T. L., Fish, W., Gorby, Y. A., Tratnyek, P. G., 1998, Degradation of carbon tetrachloride by iron metal: Complexation effects on the oxide surface, J. Contam. Hydrol., 29, 379-398. https://doi.org/10.1016/S0169-7722(97)00063-6
  15. Kim, J. S., Kim, I. H., Lee, W. M., Lee, H. I., Kim, S. G., 2014, A Effect of heavy metal to toxicity of triclosan focused on Vibrio fischeri assay, J. Kor. Soc. Environ. Eng., 36, 153-161. https://doi.org/10.4491/KSEE.2014.36.3.153
  16. Kim, Y. H., Carraway, E. R., 2000, Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons, Environ. Sci. Technol., 34, 2014-2017. https://doi.org/10.1021/es991129f
  17. Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., Buxton, H. T., 2002, Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A National reconnaissance, Environ. Sci. Technol., 36, 1202-1211. https://doi.org/10.1021/es011055j
  18. Kosera, V. S., Cruz, T. N., Chaves, E. S., Tiburtius, E. R. L., 2017, Triclosan degradation by heterogeneous photocatalysis using ZnO immobilized in biopolymer as catalyst, J. Photochem. Photobio. A, 344, 184-191. https://doi.org/10.1016/j.jphotochem.2017.05.014
  19. Li, T., Farrell, J., 2000, Reductive dechlorination of trichloroethene and carbon tetrachloride using iron and palladized-iron cathodes, Environ. Sci. Technol., 34, 173-179. https://doi.org/10.1021/es9907358
  20. Ma, L. M., Ding, Z. G., Gao, T. Y., Zhou, R. F., Xu, W. Y., Liu, J., 2004, Discoloration of methylene blue and wastewater from a plant by a Fe/Cu bimetallic system, Chemosphere, 55, 1207-1212. https://doi.org/10.1016/j.chemosphere.2003.12.021
  21. Matheson, L. J., Tratnyek, P. G., 1994, Reductive dehalogenation of chlorinated methanes by iron metal, Environ. Sci. Technol., 28, 2045-2053. https://doi.org/10.1021/es00061a012
  22. McAvoy, D. C., Schatowitz, B., Jacob, M., Hauk, A., Eckhoff, W. S., 2002, Measurement of triclosan in wastewater treatment systems, Environ. Toxicol. Chem., 21, 1323-1329. https://doi.org/10.1002/etc.5620210701
  23. Mezcua, M., Gomez, M. J., Ferrer, I., Aguera, A., Hernando, M. D., Fernandez-Alba, A. R., 2004, Evidence of 2,7/2,8-dibenzodichloro-p-dioxin as a photodegradation product of triclosan in water and wastewater samples, Anal. Chim. Acta., 524, 241-247. https://doi.org/10.1016/j.aca.2004.05.050
  24. Morales, J., Hutcheson, R., Cheng, I. F., 2002, Dechlorination of chlorinated phenols by catalyzed and uncatalyzed Fe(0) and Mg(0) particles, J. Hazard. Mater., 90, 97-108. https://doi.org/10.1016/S0304-3894(01)00336-3
  25. Nam, S., Tratnyek, P. G., 2000, Reduction of azo dyes with zero-valent iron, Water Res., 34, 1837-1845. https://doi.org/10.1016/S0043-1354(99)00331-0
  26. Scherer, M. M., Richter, S., Valentine, R. L., Alvarez, P. J. J., 2000, Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up, Crit. Rev. Environ. Sci. Technol., 30, 363-411. https://doi.org/10.1080/10643380091184219
  27. Yang, B., Ying, G. G., Zhao, J. L., Zhang, L. J., Fang, Y. X., Nghiem, L. C., 2011, Oxidation of triclosan by ferrate: Reaction kinetics, products identification and toxicity evaluation, J. Hazard. Mater., 186, 227-235. https://doi.org/10.1016/j.jhazmat.2010.10.106
  28. Ying, G. G., Kookana, R. S., 2007, Triclosan in wastewaters and biosolids from Australian wastewater treatment plants, Environ. Int., 33, 199-205. https://doi.org/10.1016/j.envint.2006.09.008
  29. Ying, G. G., Kookana, R. S., Kolpin, D. W., 2009, Occurrence and removal of pharmaceutically active compounds in sewage treatment plants with different technologies, J. Environ. Monit., 11, 1498-1505. https://doi.org/10.1039/b904548a
  30. Zuccato, E., Calamari, D., Natangelo, M., Fanelli, R., 2000, Presence of therapeutic drugs in the environment, Lancet., 355, 1789-1790. https://doi.org/10.1016/S0140-6736(00)02270-4