Browse > Article

Screening of Zero-Valent Metal for the Removal of High Concentration PCE and 1,1,1 TCA  

Kwon, Soo-Youl (한국방송통신대학교 환경보건학과)
Kim, Young (고려대학교 환경시스템공학과)
Publication Information
Journal of Wetlands Research / v.12, no.1, 2010 , pp. 23-31 More about this Journal
Abstract
Chlorinated aliphatic hydrocarbons (CAHs) such as tetrachloroethylene (PCE), 1,1,1-trichloroethane (1,1,1-TCA) are the contaminants most frequently found in soil and groundwater. They have a potential to be toxic to and persistent in environment. This study is focused on selection of zero-valent metal and ores for the removal of high concentration PCE or 1,1,1-TCA and mixture of two compound. For the screening of suitable metals, we measured dechlorination rate, removal capacities and economics by using batch reactor test. This results suggest that removal rate and dechlorination of high quality iron and zinc are higher than slag and nature ores like zinc and manganese. Among nature ores, zinc ores(64% purity) have highest removal capacities. And in economics zinc ores is 10 times better than high quality metal tested. We conclude zinc ore is most suitable metal for the removal of PCE or 1,1,1-TCA.
Keywords
Zero Valent Metal; Dechlorination; PCE; 1,1,1-TCA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Agrawal A., Ferguson W. J., Gardner B. O., Christ J. A., Bandstra J. Z. and Tratnyek P. G., Effects of Carbonate Species on the Kinetics of Dechlorination of 1,1,1- Trichloroethane by Zero-Valent Iron, Environ. Sci. Technol., 36, 4326-4333 (2002).   DOI   ScienceOn
2 Orth W. S. and Gillham R. W., Dechlorination of Trichloroethene in Aqueous Solution Using $Fe^{0}$, Environ. Sci. Technol., 30, 66-71 (1996).   DOI   ScienceOn
3 US EPA(1998). National water Quality Inventory, Report to Congress.
4 손봉한, 영가 금속을 이용한 지하수내 고농도 염소계 지방족 화합물의 단일 또는 혼합 시 제거 특성, 고려대학교 석사학위논문, 2007.
5 WHO, Guidelines for Drinking Water Quality, 1993
6 Chen, J. L., Al-Abed, S. R., Ryan, J. A. and Li, Z., Effects of pH on Dechlorination of Trichloroethylene by Zero-Valent Iron, Journal of Hazardous Materials, B83, pp. 243-254 (2001).
7 Haggblom M. M., and Bossert I. D., DEHALOGENATION, Microbial processes and environmental applications, Kluwer academic publication (2003).
8 Johnson T. L., Scherer M. M. and Tratnyek P. G., Kinetics of Halogenated Organic Compound Degradation by Iron Metal, Environ. Sci. Technol., 30, 2634-2640 (1996).   DOI   ScienceOn
9 Chen J. L., Al-Abed S. R., Ryan J. A. and Li Z., Effects of pH on Dechlorination of Trichloroethylene by Zero-Valent Iron, Journal of Hazardous Materials, B83, 243-254 (2001).
10 Arnold W. A. and Roberts A. L., Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles, Environ. Sci. Technol., 34, 1794-1805 (2000).   DOI   ScienceOn
11 Arnold W.A., Ball W. P. and Roberts A. L., Polychlorinated Ethane Reaction with Zero-Valent Zinc: Pathways and Rate Control, Journal of Contaminant Hydrology, 40, 183-200 (1999).   DOI   ScienceOn
12 Archer, W. L. and Simpson, E. L., Chemical Profile of Polychloroethanes and Polychloroalkenes, Ind. Eng. Chem., Prod. Res. Dev., 16(2) pp. 158-162 (1977).   DOI
13 Arnold W. A. and Roerts A. L., Pathways of Chlorinated Ethylene and Ahlorinated Acetylene Reaction with Zn(0), Environ. Sci. Technol., 32, 3017-3025 (1998).   DOI   ScienceOn