DOI QR코드

DOI QR Code

Trichloroethylene (TCE) Removal Capacity of Synthesized Calcium Sulfoaluminate Minerals in Hydrated Cement-based Materials

합성 Calcium Sulfoaluminate계 시멘트 수화물의 Trichloroethylene (TCE) 제거능

  • Received : 2013.01.29
  • Accepted : 2013.05.16
  • Published : 2013.07.30

Abstract

Portland cement used as binding material in combination of ferrous iron for reductive dechlorination of chlorinated organics is already widely studied topic by several researchers. However there is no clear evidence about the component solely responsible in cement for trichloroethylene (TCE) dechlorination. Many researchers suspect that the ettringite, monosulfate phases associated with hydration of cement are responsible active agents for TCE dechlorination. This study deals with synthesizing different pure crystalline minerals like ettringite and monosulfate phases of cement hydration and check individual phase's TCE dechlorinating capacity in combination with ferrous iron. The results indicated that the synthesized minerals showed no reduction capacity for TCE. The findings in the present study is significant as it shows that ettringite and monosulfate phases which were suspected minerals by previous researchers for TCE dechlorination are not reactive. Hence it is suspected that some other mineral or mineral form in cement phase could be responsible for TCE degradation.

고화제로 사용되는 포틀랜드 시멘트와 2가철을 이용하여 염소계 유기화합물을 탈염소화 시키는 기술은 많은 연구로부터 알려져 왔다. 하지만 TCE (trichloroethylene)의 탈염소화에 관계하는 명확한 유효물질 및 기작 규명은 요원한 상태이다. 많은 연구에서 ettringite와 monosulfate와 같은 시멘트 수화물질이 TCE의 탈염소화 반응에 관여할 가능성을 보고한 바 있다. 따라서 본 연구에서는 TCE의 탈염소화 반응에 유효물질로 예상 되어왔던 ettringite와 monosulfate를 별도로 합성하여, TCE 제거 실험을 수행함으로서 기존 시멘트/2가철을 사용한 TCE 분해제거에 관계하는 명확한 유효물질 및 기작을 규명 하고자 하였다. 실험결과, $Fe^{3+}$$Al^{3+}$로 구성된 ettringite, monosulfate 합성에 성공하였고, 이후 2가철을 첨가하여 TCE 분해실험에서 합성물의 분해능을 확인하였지만 뚜렷한 제거가 나타나지 않았다. 이는 기존문헌의 예상과는 상반된 결과를 나타냈으며, 실험결과를 통해 시멘트/2가철을 사용한 TCE 제거 실험의 분해기작을 예상할 수 있었다. 예상 되는 분해기작으로는 ettringite 및 monosulfate 외의 시멘트 수화물에 의한 것과 C3A외의 시멘트 클링커 화합물 그리고 시멘트 내 trace metal에 의한 영향일 것으로 추측하였다.

Keywords

References

  1. Baur, I., Keller, P., Mavrocordatos, D., Wehrli, B. and Johnson, C. A. (2004). "Dissolution-precipitation behaviour of ettringite, monosulfate, and calcium silicate hydrate." Cement and concrete research, Vol. 34, No. 2, pp. 341-348. https://doi.org/10.1016/j.cemconres.2003.08.016
  2. Bensted, J. and Barnes, P. (2002). Structure and performance of cements, Spon press, London and New York.
  3. Brown, P. W. (1993). "Kinetics of tricalcium aluminate and tetracalcium aluminoferrite hydration in the presence of calcium sulfate." Journal of the American Ceramic Society, Vol. 76, No. 12, pp. 2971-2976. https://doi.org/10.1111/j.1151-2916.1993.tb06597.x
  4. Cavani, F., Trifir, F. and Vaccario, A. (1991). Hydrotalcite-type anionic clays: Preparation, Properties and Applications, Elsevier.
  5. Choi, W. H., Ghorpade, P. A., Kim, K. B., Shin, J. W. and Park, J. Y. (2012). "Properties of synthetic monosulfate as a novel material for arsenic removal." J. Hazard Mater, Vol. 227-228, pp. 402-409 https://doi.org/10.1016/j.jhazmat.2012.05.082
  6. Christensen, A. N., Jensen, T. R. and Hanson, J. C. (2004). "Formation of ettringite, $Ca_{6}Al_{2}$ $(SO_{4})_{3}(OH)_{12}.26$$H_2O$, Aft, and monosulfate, $Ca_{4}Al_{2}O_{6}$ $(SO_4)$. $14H_{2}O$, AFm-14, in hydrothermal hydration of Portland cement and of calcium aluminum oxide: calcium sulfate dihydrate mixtures studied by in situ synchrotron X-ray powder diffraction." Journal of solid state chemistry, Vol. 177, No. 6, pp. 1944-1951. https://doi.org/10.1016/j.jssc.2003.12.030
  7. Clark, B. and Brown, P. (1999). "The formation of calcium sulfoaluminate hydrate compounds: Part I." Cement and concrete research, Vol. 29, No. 12, pp. 1943-1948. https://doi.org/10.1016/S0008-8846(99)00200-8
  8. Davis, J. A. and Hayes, K. F. (1986). "Geochemical processes at mineral surfaces: an overview." Geochemical processes at mineral surfaces, Vol. 323, No. 2-18.
  9. Fuller, M. E. and Scow, K. M. (1997). "Impact of trichloroethylene and toluene on nitrogen cycling in soil." Applied and environmental microbiology, Vol. 63, No. 10, pp. 4015-4019.
  10. Gineys, N., Aouad, G., Sorrentino, F. and Damidot, D. (2011). "Incorporation of trace elements in Portland cement clinker: Thresholds limits for Cu, Ni, Sn or Zn." Cement and concrete research, Vol. 41, No. 11, pp. 1177-1184. https://doi.org/10.1016/j.cemconres.2011.07.006
  11. Henschler, D., Bonse, G. and Greim, H. (1976). "Carcinogenic potential of chlorinated ethylenes tentative molecular rules." IARC scientific publications, Vol. 13, pp. 171-175.
  12. Hwang, I. and Batchelor, B. (2000). "Reductive dechlorination of tetrachloroethylene by Fe (II) in cement slurries." Environ Sci Technol, Vol. 34, No. 23, pp. 5017-5022. https://doi.org/10.1021/es991377b
  13. Hwang, I. and Batchelor, B. (2001). "Reductive dechlorination of tetrachloroethylene in soils by Fe (II)-based degradative solidification/ stabilization." Environ Sci Technol, Vol. 35, No. 18, pp. 3792-3797. https://doi.org/10.1021/es010619g
  14. Hwang, I., Park, H. J., Kang, W. H. and Park, J. Y. (2005). "Reactivity of Fe(II)/cement systems in dechlorinating chlorinated ethylenes." J. Hazard Mater, Vol. 118, No. 1, pp. 103-111. https://doi.org/10.1016/j.jhazmat.2004.10.002
  15. Jeon, J. W., Jung, S. M. and Sasaki, Y. (2010). "Formation of Calcium Ferrites under Controlled Oxygen Potentials at 1273 K." ISIJ international, Vol. 50, No. 8, pp. 1064-1070. https://doi.org/10.2355/isijinternational.50.1064
  16. Jung, B. and Batchelor, B. (2008). "Analysis of dechlorination kinetics of chlorinated aliphatic hydrocarbons by Fe(II) in cement slurries." J. Hazard Mater, Vol. 152, No. 1, pp. 62-70. https://doi.org/10.1016/j.jhazmat.2007.06.061
  17. Kim, H. S., Kang, W. H., Kim, M., Park, J. Y. and Hwang, I. (2008). "Comparison of hematite/Fe (II) systems with cement/ Fe(II) systems in reductively dechlorinating trichloroethylene." Chemosphere, Vol. 73, No. 5, pp. 813-819. https://doi.org/10.1016/j.chemosphere.2008.04.092
  18. Ko, S. and Batchelor, B. (2007). "Identification of active agents for tetrachloroethylene degradation in Portland cement slurry containing ferrous iron." Environ Sci Technol, Vol. 41, No. 16, pp. 5824-5832. https://doi.org/10.1021/es070361f
  19. Ko, S. and Batchelor, B. (2010). "Effect of cement type on performance of ferrous iron-based degradative solidification and stabilization." Environ Engineering Science, Vol. 27, No. 11, pp. 977-987. https://doi.org/10.1089/ees.2010.0189
  20. Kovalick Jr, W. (1992). "Trends in innovative treatment technologies at contaminated sites." Water Science & Technology, Vol. 26, No. 1-2, pp. 99-106.
  21. Maithreepala, R. A. and Doong, R. A. (2005). "Enhanced dechlorination of chlorinated methanes and ethenes by chloride green rust in the presence of copper(II)." Environ. Sci. Technol, Vol. 39, No. 11, pp. 4082-4090. https://doi.org/10.1021/es048428b
  22. Moschner, G., Lothenbach, B., Rose, J., Ulrich, A., Figi, R. and Kretzschmar, R. (2008). "Solubility of Fe-ettringite $(Ca_{6}[Fe(OH)_{6}]_{2}\;(SO_{4})_{3}\;26H_{2}O)$." Geochimica et Cosmochimica Acta, Vol. 72, No. 1, pp. 1-18. https://doi.org/10.1016/j.gca.2007.09.035
  23. Perkins, R. and Palmer, C. (1999). "Solubility of ettringite $(CA_{6}AL\;(OH)_{6})_{2}\;(SO_{4})_{3}.26H_{2}O)\;AT\;5-75^{\circ}C$." Geochimica et Cosmochimica Acta, Vol. 63, No. 13-14, pp. 1969-1980. https://doi.org/10.1016/S0016-7037(99)00078-2
  24. Rhomberg, L. R. (2000). "Dose-response analyses of the carcinogenic effects of trichloroethylene in experimental animals." Environmental Health Perspectives, Vol. 108(Suppl 2), pp. 343-358. https://doi.org/10.1289/ehp.00108s2343
  25. Sposito, G. (1994). Chemical equilibria and kinetics in soils, Oxford University Press, USA.
  26. Taylor, H., Famy, C. and Scrivener, K. (2001)."Delayed ettringite formation." Cement and concrete research, Vol. 31, No. 5, pp. 683-693. https://doi.org/10.1016/S0008-8846(01)00466-5
  27. Taylor, H. F. W. (1997). Cement chemistry, Thomas Telford.
  28. Woo, M. A., Woo Kim, T., Paek, M. J., Ha, H. W., Choy, J. H. and Hwang, S. J. (2011). "Phosphate-intercalated Ca-Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate." Journal of solid state chemistry, Vol. 184, No. 1, pp. 171-176. https://doi.org/10.1016/j.jssc.2010.11.003

Cited by

  1. VOCs Removal by Oxidation/Reduction Reaction of Cu-Doped Photocatalyst vol.7, pp.6, 2016, https://doi.org/10.18178/ijcea.2016.7.6.605