• Title/Summary/Keyword: cylindrical geometry

Search Result 186, Processing Time 0.034 seconds

Effect of Random Geometry Perturbation on Acoustic Scattering (기하형상의 임의교란이 음향산란에 미치는 영향)

  • 주관정
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.117-123
    • /
    • 1992
  • In recent years, the finite element method has become one of the most popular numerical technique for obtaining solutions of engineering science problems. However, there exist various uncertainties in modeling the problems, such as the dimensions(geometry shape), the material properties, boundary conditions, etc. The consideration for the uncertainties inherent in the problems can be made by understanding the influences of uncertain parameters[1]. Determining the influences of uncertainties as statistical quantities using the standard finite element method requires enormous computing time, while the probabilistic finite element method is realized as an efficient scheme[2,3] yielding statistical solution with just a few direct computations. In this paper, a formulation of the probabilistic fluid-structure interaction problem accounting for the first order perturbation of geometric shape is derived, and especially probabilistical acoustic pressure scattering from the structure with surrounding fluid is focused on. In Section 2, governing equations for the fluid-structure problems are given. In Section 3, a finite element formulation, based on the functional, is presented. First order perturbation of geometric shape with randomness is incorporated into the finite element formulation in conjunction with discretization of the random fields in Section 4 and 5. Finally, the proposed formulation is applied to a acoustic pressure scattering problem from an infinitely long cylindrical shell structure with randomness of radial perturbation.

  • PDF

Similarity Analysis for the Dispersion of Spiraling Modes on Metallic Nanowire to a Planar Thin Metal Layer

  • Lee, Dong-Jin;Park, Se-Geun;Lee, Seung-Gol;O, Beom-Hoan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.538-542
    • /
    • 2013
  • We propose a simple model to elucidate the dispersion behavior of spiraling modes on silver nanowire by finding correspondence parameters and building a simple equivalent relationship with the planar insulator-metal-insulator geometry. The characteristics approximated for the proposed structure are compared with the results from an exact solution obtained by solving Maxwell's equation in cylindrical coordinates. The effective refractive index for our proposed equivalent model is in good agreement with that for the exact solution in the 400-2000 nm wavelength range. In particular, when the radius of the silver nanowire is 100 nm, the calculated index shows typical improvements; the average percentage error for the real part of the effective refractive index is reduced to only 5% for the $0^{th}$ order mode (11.9% in previous results) and 1.5% for the $1^{st}$ order mode (24.8% in previous results) in the 400-800 nm wavelength range. This equivalent model approach is expected to provide further insight into understanding the important behavior of nanowire waveguides.

Improvement and verification of the DeCART code for HTGR core physics analysis

  • Cho, Jin Young;Han, Tae Young;Park, Ho Jin;Hong, Ser Gi;Lee, Hyun Chul
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.13-30
    • /
    • 2019
  • This paper presents the recent improvements in the DeCART code for HTGR analysis. A new 190-group DeCART cross-section library based on ENDF/B-VII.0 was generated using the KAERI library processing system for HTGR. Two methods for the eigen-mode adjoint flux calculation were implemented. An azimuthal angle discretization method based on the Gaussian quadrature was implemented to reduce the error from the azimuthal angle discretization. A two-level parallelization using MPI and OpenMP was adopted for massive parallel computations. A quadratic depletion solver was implemented to reduce the error involved in the Gd depletion. A module to generate equivalent group constants was implemented for the nodal codes. The capabilities of the DeCART code were improved for geometry handling including an approximate treatment of a cylindrical outer boundary, an explicit border model, the R-G-B checker-board model, and a super-cell model for a hexagonal geometry. The newly improved and implemented functionalities were verified against various numerical benchmarks such as OECD/MHTGR-350 benchmark phase III problems, two-dimensional high temperature gas cooled reactor benchmark problems derived from the MHTGR-350 reference design, and numerical benchmark problems based on the compact nuclear power source experiment by comparing the DeCART solutions with the Monte-Carlo reference solutions obtained using the McCARD code.

INVESTIGATION OF ENDOSCOPE CAPSULE DESIGN ON THE FRICTIONAL RESISTANCE INSIDE THE INTESTINE

  • Baek, N.K.;Sung, I.H.;Kim, J.S.;Kim, D.E.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.367-368
    • /
    • 2002
  • The design of capsule body for self-propelled endoscope is important from the frictional resistance point of view. The capsule should be able to overcome the frictional resistance in order to move along the intestine. The motivation of this work was to gain a better understanding of the capsule body design on the frictional resistance of the capsule inside an intestine. A special experimental set-up was built to measure the frictional resistance as the capsule was being pulled inside the pig intestine specimen. Tests were performed with open and closed intestine specimens. Experimental data showed that smooth cylindrical capsule geometry resulted in the least frictional resistance. The resistance inside the closed intestine specimen was about four times higher than that of the open specimen. It is expected that the results of this work will be used to design the optimum propulsion system for the microendoscope.

  • PDF

Numerical investigation on the blood flow characteristics considering the axial rotation in stenosed artery

  • Sung, Kun-Hyuk;Ro, Kyoung-Chul;Ryou, Hong-Sun
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.119-126
    • /
    • 2009
  • A numerical analysis is performed to investigate the effect of rotation on the blood flow characteristics with four different angular velocities. The artery has a cylindrical shape with 50% stenosis rate symmetrically distributed at the middle. Blood flow is considered a non-Newtonian fluid. Using the Carreau model, we apply the pulsatile velocity profile at the inlet boundary. The period of the heart beat is one second. In comparison with no-rotation case, the flow recirculation zone (FRZ) contracts and its duration is reduced in axially rotating artery. Also wall shear stress is larger after the FRZ disappears. Although the geometry of artery is axisymmetry, the spiral wave and asymmetric flow occur clearly at the small rotation rate. It is caused that the flow is influenced by the effects of the rotation and the stenosis at same time.

Analysis of optical splitters in photonic crystals (광자 크리스탈로 구성된 광 분배기의 특성 연구)

  • 윤지수;정교방
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.1
    • /
    • pp.27-31
    • /
    • 2002
  • We design a 1$\times$4 optical splitter made of photonic crystal waveguides and analyze the properties of the optical splitter using the finite-difference time-domain method with perfectly-matched-layer absorbing boundaries. The photonic crystal is constructed from cylindrical rods in air on a square lattice. Our simulation results show that there are different transmission properties for four bend geometries and different incident-wave frequencies. The sum of the power transmission of the splitted light is over 93 percent at a certain geometry and frequency, and the incident power splits in the four arms with almost the same ratio.

Rigid-Plastic Explicit Finite Element Formulation for Two-Dimensional Analysis of Sheet Metal Processes (2차원 박판성형공정해석을 위한 강소성 외연적 유한 요소수식화)

  • 안동규;정동원;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.206-211
    • /
    • 1993
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solution since it improves the convergency problem,memory size and computational time especially for the case of complicated geometry and large element number. In the present work, a basic formulation for rigid-plastic explicit finite element analysis of plain strain sheet metal forming problems has been proposed. The effect of some basic parameters involved in the dynamic analysis has been studied in detail. A direct trial-and-error method is introduced to treat contact and friction. In order to show the validity and effectiveness of the proposed explicit scheme, computation are carried out for cylindrical punch stretching and the computational results are compared with those by the implicit scheme as well as with a commercial code. The proposed rigid-plastic explicit element method can be used as a robust and efficient computational method for analysis of sheet method forming.

  • PDF

MULTI-HARMONIC MODELS FOR BUBBLE EVOLUTION IN THE RAYLEIGH-TAYLOR INSTABILITY

  • Choi, Sujin;Sohn, Sung-Ik
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.663-673
    • /
    • 2017
  • We consider the multi-harmonic model for the bubble evolution in the Rayleigh-Taylor instability in two and three dimensions. We extend the multi-harmonic model in two dimensions to a high-order and present a new class of steady-state solutions of the bubble motion. The growth rate of the bubble is expressed by a continuous family of two free parameters. The critical point in the family of solutions is identified as a saddle point and is chosen as the physically significant solution. We also present the multi-harmonic model in the cylindrical geometry and find the steady-state solution of the axisymmetric bubble. Validity and limitation of the model are also discussed.

Torque Characteristics Analysis of Synchronous Reluctance Motor by Winding Function Theory (Winding Function 이론을 이용한 동기형 릴럭턴스 전동기의 토크 특성 해석)

  • Woo, Kyung-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.26-31
    • /
    • 2011
  • In this paper, torque characteristics analysis of Synchronous Reluctance Motor with the cylindrical rotor type by winding function theory(WFT) is described. The stator is same as one of the induction motor. From the d-axis, q-axis flux density distribution, to calculate self and mutual inductances needed to calculate the torque of the machine by using winding function theory the new equivalent geometry of rotor was proposed. D-axis, q-axis flux densities, self inductance and torque characteristics were obtained. From the comparison with results of finite element analysis the proposed method was verified.

Nanostructures of Block Copolymer under Confined Geometry

  • Jo, Won-Ho;Huh, June
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.73-73
    • /
    • 2006
  • We investigate the influence of the confinement on the mesophase formation of diblock copolymer caged in a cylindrical pore in which the surface of the pore preferentially attracts one of the blocks. Using cell dynamics simulation, we construct phase maps as a function of the composition of diblock copolymer (f) and the pore diameter (D) relative to the period at bulk ($L_{o}$). Depending on f and $D/L_{o}$, we observe a variety of confinement-induced mesophases ranging from a simple dartboard-like structure to more complicated structures involving various forms of helices or doughnuts.

  • PDF