
J. Korean Math. Soc. 54 (2017), No. 2, pp. 663–673
https://doi.org/10.4134/JKMS.j160219
pISSN: 0304-9914 / eISSN: 2234-3008

MULTI-HARMONIC MODELS FOR BUBBLE EVOLUTION

IN THE RAYLEIGH-TAYLOR INSTABILITY

Sujin Choi and Sung-Ik Sohn

Abstract. We consider the multi-harmonic model for the bubble evolu-
tion in the Rayleigh-Taylor instability in two and three dimensions. We
extend the multi-harmonic model in two dimensions to a high-order and
present a new class of steady-state solutions of the bubble motion. The
growth rate of the bubble is expressed by a continuous family of two free
parameters. The critical point in the family of solutions is identified as
a saddle point and is chosen as the physically significant solution. We
also present the multi-harmonic model in the cylindrical geometry and

find the steady-state solution of the axisymmetric bubble. Validity and
limitation of the model are also discussed.

1. Introduction

Unstable fluid mixing occurs frequently in basic science and engineering ap-
plications. When a heavy fluid is supported by a lighter fluid in a gravitational
field, the interface between the fluids is unstable under small disturbances. This
phenomenon is known as the Rayleigh-Taylor (RT) instability [17] and plays
important roles in many fields ranging from astrophysics to inertial confine-
ment fusion. To investigate dynamics of this instability, extensive researches
have been carried out in last decades. For reviews, see Sharp [19] and more
recently, Abarzhi [2].

Small perturbations at the unstable interface in the RT instability grow into
nonlinear structures in the form of bubbles and spikes (See Fig. 1). A bubble
(spike) is a portion of the light (heavy) fluid penetrating into the heavy (light)
fluid. At later times, a bubble attains a constant growth rate. Eventually, a
turbulent mixing caused by vortex structures around spikes breaks the ordered
fluid motion [9, 12].
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Figure 1. Flow description of RT instability. g represents
the gravitational acceleration, and ρ1 > ρ2.

Layzer [13] presented a potential-flow model, based on the approximate de-
scription of the flow near the bubble tip, and successfully described the nonlin-
ear evolution of the single-mode RT bubble of the infinite density ratio. Since
Layzer’s work, it has been studied by many people [11, 25]; for example, the
interface of finite density ratios [10, 14], effects of viscosity and surface ten-
sion [22], and of viscoelastic fluids [18]. Limitations of the Layzer model were
reported by Mikaelian [15]. A source-flow model [7, 21], which describes the
bubble as the potential with a source singularity, can be considered a similar
approach as that from Layzer and provides more accurate prediction for the
bubble motion.

Abarzhi [1] proposed a different type of potential-flow model, the so called
multi-harmonic model, extending the single harmonic potential in the Layzer
model to multiple harmonics. In this model, the bubble shape is parametrized
by the principal curvature at the bubble tip. This approach gives a continuous
family of asymptotic steady solutions for a bubble. It is consistent with the
nonuniquess argument for the bubble evolution by Garabedian [8], Birkhoff
and Carter [6], and recently Zudin [26]. The key idea of this approach is that
the fastest solution in the family is chosen as the physically significant one.
Since Abarzhi’s work, the model has been developed for the interfaces of finite
density contrast [3, 4] and in various polygonal geometries [5].

In this paper, we present two extensions of the multi-harmonic model for
the bubble of infinite density ratio: a high-order model in two dimensions and
a model in the cylindrical geometry. The multi-harmonic model for these two
cases was not previously studied, whereas the Layzer-type model often con-
sidered them [10, 14]. The main purpose of this study is to complement the
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previous works of the multi-harmonic model and to examine validity and limi-
tation of the model, by identifying whether a similar approach can be applied
to the two cases and the solution of the bubble evolution is improved by the
high-order model.

In Section 2, we describe the potential-flow models for the evolution of an un-
stable interface. In Section 3, we present the high-order multi-harmonic model
for the bubble evolution in two dimensions and derive the asymptotic solution
from the model. In Section 4, the model for the bubble in the cylindrical flow
is presented. Section 5 gives conclusions.

2. Potential-flow models

We consider an interface in a vertical channel between fluids with infinite
density ratio in two dimensions. The upper fluid is heavier than the lower fluid
(vacuum). We assume that the fluid is incompressible, inviscid, and irrota-
tional. Let (x, y) be the Cartesian coordinates. The channel width L, [L] = m,

and the gravitational acceleration g, [g] = m/s
2
, are the basic scales of the

instability. The velocity potential satisfies

(1) ∆φ = 0,

with the zero velocity condition at the far field

(2)
∂φ

∂y
→ 0 for y → ∞.

The bubble moves in the positive y-direction with the tip velocity U . It is
convenient to choose a frame of reference comoving with the tip of the bubble.
The interface near the bubble tip is approximated as

(3) η(x, y, t) = y +

∞
∑

j=1

ζj(t)x
2j = 0,

where ζ1(t) is the principal curvature at the bubble tip. The evolution of the
interface is determined by the kinematic condition and the Bernoulli equation

dη(x, y, t)

dt
= v +

∞
∑

j=1

dζj

dt
x2j + 2

∞
∑

j=1

j ζj u x2j−1 = 0,(4)

∂φ

∂t
+

1

2
(∇φ)2 +

(

g +
dU

dt

)

y = 0,(5)

where u and v are x- and y-components of the interface velocity taken from
the fluid.

The velocity potential can be taken as

(6) φ(x, y, t) =

∞
∑

m=1

am(t)

(

1

mk
e−mky cos(mkx) + y

)

,



666 S. CHOI AND S.-I. SOHN

where k = 2π/L is the wave number. Layzer [13] expanded the kinematic
condition (4) and the Bernoulli equation (5) by the second order in x, using
the first harmonic in the potential (6), and obtained the asymptotic solution
for the bubble growth

(7) ζ1 =
k

6
, U =

√

g

3k
.

Abarzhi [1] presented the second-order solution for the bubble motion, re-
taining the first and second harmonics in (6), i.e., m = 1 and 2. The velocity
is expressed as a function of the curvature

(8) U =
3

2

√

g

k

√

2ζ1/k[1− 4(ζ1/k)2]2

1 + 4ζ1/k + 4(ζ1/k)2
.

Abarzhi chose the fastest solution in the family (8). Imposing the condition,

(9)
∂U

∂ζ1
(ζ1 = ζ∗1 ) = 0,

∂2U

∂ζ21
(ζ1 = ζ∗1 ) < 0,

she obtained the solution

(10) ζ∗1 =
k

6
, U =

√

g

3k
,

which is the same as the solution (7) by Layzer. A stability analysis for steady
solutions is also given in [1]. It was shown that the region of stable solutions
is narrow and includes the fastest solution. The dependence of the velocity on
the parameter in this region is weak.

3. High-order model

We present a high-order extension of the multi-harmonic model in two di-
mensions. We take the four harmonics in (6), 1 ≤ m ≤ 4, and approximate the
interface in the fourth-order in x,

(11) η(x, y, t) = y + ζ1(t)x
2 + ζ2(t)x

4 = 0.

The quantities in (4) and (5) are approximated as

∂φ

∂t
=

4
∑

m=1

1

mk

dam

dt
− 1

2

dM1

dt
x2 +

(

1

2

dM1

dt
ζ21 − 1

2

dM1

dt
ζ1 +

1

24

dM3

dt

)

x4,

∂φ

∂x
= −M1x+

(

−M2ζ1 +
1

6
M3

)

x3,

∂φ

∂y
=

(

−M1ζ1 +
1

2
M2

)

x2 +

(

−M1ζ2 −
1

2
M2ζ

2
1 +

1

2
M3ζ1 −

1

24
M4

)

x4,
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where Mj are defined by the moments

Mj(t) =

4
∑

m=1

am(t)(km)j

for 0 ≤ j ≤ 4. Then, the second- and fourth-order equations in x of the
kinematic condition (4) are given by

dζ1

dt
− 3ζ1M1 +

M2

2
= 0,(12)

dζ2

dt
− 5M1ζ2 −

5

2
M2ζ

2
1 +

5

6
M3ζ1 −

1

24
M4 = 0.(13)

The second- and fourth-order equations of the Bernoulli equation (5) are

1

2

dM1

dt
− ζ1

dM0

dt
− M2

1

2
+ ζ1 g = 0,(14)

1

2

dM1

dt
ζ21 − 1

2

dM2

dt
ζ1 +

1

24

dM3

dt
+

dM0

dt
ζ2 +

1

2
M1M2ζ1

+
1

2
M2

1 ζ
2
1 − 1

6
M1M3 +

1

8
M2

2 − gζ2 = 0.(15)

Equations (12)-(15) determine the dynamics of the bubble.
We find the asymptotic (or steady state) solution of the model. All the time

derivatives in (12)-(15) are taken as zero. The definition of the moment gives

a1 =
24M1k

3 − 26M2k
2 + 9M3k −M4

6k4
,

a2 =
−12M1k

3 + 19M2k
2 − 8M3k +M4

4k4
,

a3 =
8M1k

3 − 14M2k
2 + 7M3k −M4

6k4
,

a4 =
−6M1k

3 + 11M2k
2 − 6M3k +M4

24k4
.

From the far field boundary condition, in the comoving frame, the bubble
velocity is written as

U = −M0 = −(a1 + a2 + a3 + a4)

=
−50M1k

3 + 35M2k
2 − 10M3k +M4

24k4
.(16)

From (12) and (13), ζ1 and ζ2 at a late time are

ζ1 =
M2

6M1
,(17)
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ζ2 = − 1

72

M3
2

M3
1

+
1

36

M2M3

M2
1

− 1

120

M4

M1
.(18)

At a late time, (14) gives

M1 = −
√

2gζ1.

Here, the negative sign is taken from the quadratic equation. Substituting this
into (17), we have

M2 = −6
√

2g ζ
3/2
1 .

Then, (15) and (18) give the expressions for M3 and M4,

M3 = 3
√

2g

(−16ζ31 + ζ2√
ζ1

)

,

M4 = 60
√

2g
(

−10ζ
7/2
1 + 3

√

ζ1ζ2

)

.

The bubble velocity is expressed as a function of ζ1 and ζ2,

U =
5
√
2

4

√

g

k

[

5

3

√

ζ1

k
− 7

(

ζ1

k

)
3
2

+ 16

(

ζ1

k

)
5
2

− 20

(

ζ1

k

)
7
2

+

(

6− 1
ζ1
k

)
√

ζ1

k

ζ2

k3

]

.

(19)

The bubble velocity is a function of two parameters in the high-order model,
while it is a function of one parameter in the low-order model.

We now find the critical point in the family (19), applying the similar idea
of the low-order model. This approach imposes the solution to satisfy the
conditions

∂U

∂ζ1
(ζ1 = ζ∗1 , ζ2 = ζ∗2 ) = 0,(20)

∂U

∂ζ2
(ζ1 = ζ∗1 , ζ2 = ζ∗2 ) = 0.(21)

The second condition is not coupled in the two parameters, because (19) is a
linear function in ζ2. We thus obtain the asymptotic bubble curvature,

(22) ζ∗1 =
k

6
.

The condition (20) gives

(23) ζ∗2 =
7

324
k3.

Equation (19) has only one critical point (ζ∗1 , ζ
∗
2 ), which is identified as a saddle

point, because (Uζ1ζ2)
2 − Uζ1ζ1Uζ2ζ2 > 0. The contour plot of (19) near the

critical point is shown in Fig. 2. The bubble velocity is constant on the line
ζ1/k = 1/6. The geometric structure in Fig. 2 shows that the solution is chosen
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Figure 2. Contour plot of the bubble velocity in ζ1/k

and ζ2/k
3. It shows that the critical point (16 ,

7
324 ) =

(0.1667, 0.0217) is a saddle point.

as the fastest in ζ1, but is constant in ζ2. The asymptotic bubble velocity is
therefore obtained by

(24) U =
115

108

√

g

3k
.

The bubble velocity has the correction factor 115/108 = 1.065, but the bubble
curvature is the same as the second-order solution (10).

4. Model in the cylindrical flow

In this section, we consider an axisymmetric interface in a cylindrical tube
of the radius R (See Fig. 1 in [13]). The interface near the tip of the bubble
can be written as

(25) z = η(r, t) =

∞
∑

j=0

ζj(t) r
2j ,

where r and z represent the axisymmetric coordinates. The velocity potential
of the fluid is taken as

(26) φ(x, y, t) =

∞
∑

m=1

am(t)

(

1

km
J0(kmr) e−kmz + z

)

,

where km = βm/R and βm is the m-th zero of the Bessel function J1(r). Note
that Goncharov [10] proposed J0(mkr) instead of J0(kmr) in the potential
of a high order model. The potential should be expressed by (26), because
{J0(kmr)} forms a complete orthogonal basis for a function in 0 ≤ r ≤ R.
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Layzer [13] used the first harmonic and presented the asymptotic solution for
the bubble,

(27) ζ1 =
k1

8
, U =

√

g

k1
.

We take the first and second harmonics in (26), m = 1 and 2, and approxi-
mate the interface in the second-order in r,

(28) η(r, t) = z + ζ1(t)r
2 = 0.

Satisfying the kinematic condition and the Bernoulli equation in the second-
order in r, we have the equations for the bubble growth,

dζ1

dt
− 2ζ1M1 +

M2

4
= 0,(29)

1

4

dM1

dt
− ζ1

dM0

dt
− M2

1

8
+ ζ1 g = 0.(30)

Here, the moments are defined as Mj(t) =
∑2

m=1 am(t)(km)j . The bubble
velocity is then expressed as a function of the curvature,

(31) U =
2
√
2g

k1k2

[

ζ
1
2
1 (k1 + k2)− 8ζ

3
2
1

]

.

We choose the fastest solution in this family, i.e., U ′(ζ∗1 ) = 0, and find the
asymptotic bubble curvature,

(32) ζ∗1 =
1

24
(k1 + k2).

From (31), the asymptotic bubble velocity is obtained as

(33) U =
2

3
√
3

√

(k1 + k2)3g

k1k2
.

We emphasize that the solution (32) and (33) depends on both wavenumbers
k1 and k2 and has a different functional form from the solution of the Layzer
model (27). Recall that in two dimensions, the second-order solution of the
multi-harmonic model is the same as Layzer’s. Nevertheless, the quantitative
difference between the solutions (32) and (33), and (27) is small; the solution
(32) and (33) can be rewritten as

(34) ζ∗1 =
k1

8.48
, U = 1.0013

√

g

k1

from the fact β2/β1 = 7.0156/3.8317 = 1.8309. The difference of the bubble
curvature of the two solutions is only 6%, and the bubble velocities are nearly
the same.
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5. Discussion and conclusions

We have presented the multi-harmonic models for the RT instability in two
and three dimensions and have found new types of solutions of the bubble
motion. In the high-order model in two dimensions, the asymptotic solutions
are expressed in the family of the two free parameters, and the critical point
is chosen as the physically significant solution. Interestingly, the asymptotic
bubble velocity is, locally, the fastest in the parameter of the curvature, but
is constant in the parameter ζ2. Therefore, the bubble curvature still acts as
the key parameter in the approach of the high-order model, similarly as the
low-order model. As a result of the high-order model, we obtain the correction
factor of 7% in the asymptotic bubble velocity.

Although we did not attempt the stability analysis for the asymptotic solu-
tion, we expect that the stability region is very narrow, including the critical
point. Abarzhi [1] found that as the order of approximation of the model
is higher, the stability region becomes narrowed and bifurcations points are
brought together. The stability analysis for the high-order model requires much
more works of numerical calculations and we leave it for future study.

A different high-order model was proposed by Goncharov [10], taking only
odd harmonics in the potential (6). This approach requires no free parameters
in the equations. Using the odd harmonics up to m ≤ 7, he showed the
asymptotic solution

(35) ζ1 =
k

4.88
, U = 1.025

√

g

3k
.

Note that the predictions for the bubble velocity are little different among the
models, but the solutions of the bubble curvature are fairly different. Numerical
results showed the convergence of the curvature to ζ1 ≈ k/4, at late times [20].

We have also presented the multi-harmonic model in the cylindrical geome-
try and have obtained a new type of asymptotic solution of the axisymmetric
bubble. The functional form of the solution of the present model is different
from that of Layzer model, while the solutions of the two models are the same
in two dimensions. In fact, the different type of solution comes from the use of
the orthogonal functions for the potential in the present model.

In summary, we have successfully extended the multi-harmonic model to a
high-order in two dimensions and to the cylindrical flow. We conclude that
the approach of the multi-harmonic model is appropriate for the interface of
infinite density ratio, although it has a limitation for quantitative prediction
for the bubble curvature.

For the case of a finite density contrast, the validity of the approach of
the multi-harmonic model is under question [23]. The solution of the multi-
harmonic model differs significantly from numerical and experimental results,
for low density ratios [16, 24]. So far there is no theoretical model which gives
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quantitatively correct prediction for the RT bubble and simultaneously satisfies
the far field boundary conditions. This subject is open to researchers.
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