DOI QR코드

DOI QR Code

Similarity Analysis for the Dispersion of Spiraling Modes on Metallic Nanowire to a Planar Thin Metal Layer

  • Lee, Dong-Jin (School of Information and Communication Engineering, Inha University) ;
  • Park, Se-Geun (School of Information and Communication Engineering, Inha University) ;
  • Lee, Seung-Gol (School of Information and Communication Engineering, Inha University) ;
  • O, Beom-Hoan (School of Information and Communication Engineering, Inha University)
  • Received : 2013.10.14
  • Accepted : 2013.11.21
  • Published : 2013.12.25

Abstract

We propose a simple model to elucidate the dispersion behavior of spiraling modes on silver nanowire by finding correspondence parameters and building a simple equivalent relationship with the planar insulator-metal-insulator geometry. The characteristics approximated for the proposed structure are compared with the results from an exact solution obtained by solving Maxwell's equation in cylindrical coordinates. The effective refractive index for our proposed equivalent model is in good agreement with that for the exact solution in the 400-2000 nm wavelength range. In particular, when the radius of the silver nanowire is 100 nm, the calculated index shows typical improvements; the average percentage error for the real part of the effective refractive index is reduced to only 5% for the $0^{th}$ order mode (11.9% in previous results) and 1.5% for the $1^{st}$ order mode (24.8% in previous results) in the 400-800 nm wavelength range. This equivalent model approach is expected to provide further insight into understanding the important behavior of nanowire waveguides.

Keywords

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, London, UK, 1998).
  2. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006). https://doi.org/10.1103/PhysRevB.73.035407
  3. J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, "Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides," Opt. Express 16, 14902-14909 (2008). https://doi.org/10.1364/OE.16.014902
  4. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006). https://doi.org/10.1038/nature04594
  5. L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Express 13, 6645-6650 (2005). https://doi.org/10.1364/OPEX.13.006645
  6. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, "Characterization of long-range surface-plasmon-polariton waveguides," J. Appl. Phys. 98, 043109 (2005). https://doi.org/10.1063/1.2008385
  7. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures," Phys. Rev. B 63, 125417 (2001). https://doi.org/10.1103/PhysRevB.63.125417
  8. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000). https://doi.org/10.1103/PhysRevB.61.10484
  9. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, "Dielectric-loaded plasmonic waveguide-ring resonators," Opt. Express 17, 2968-2975 (2009). https://doi.org/10.1364/OE.17.002968
  10. D. Dai and S. He, "A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement," Opt. Express 17, 16646-16653 (2009). https://doi.org/10.1364/OE.17.016646
  11. D. Dai and S. He, "Low-loss hybrid plasmonic waveguide with double low-index nano-slots," Opt. Express 18, 17958-17966 (2010). https://doi.org/10.1364/OE.18.017958
  12. Y. Su, Z. Zheng, Y. Bian, L. Liu, X. Zhao, J. Liu, T. Zhou, S. Guo, W. Niu, Y. Liu, and J. Zhu, "Metal-coated hollow nanowires for low-loss transportation of plasmonic modes with nanoscale mode confinement," J. Optics-UK 14, 095501 (2012). https://doi.org/10.1088/2040-8978/14/9/095501
  13. A. V. Krasavin and A. V. Zayats, "Silicon-based plasmonic waveguides," Opt. Express 18, 11791-11799 (2010). https://doi.org/10.1364/OE.18.011791
  14. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005). https://doi.org/10.1103/PhysRevLett.95.063901
  15. P. B. Catrysse and S. Fan, "Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry," Appl. Phys. Lett. 94, 231111 (2009). https://doi.org/10.1063/1.3148692
  16. W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, "Light propagation in curved silver nanowire plasmonic waveguides," Nano Lett. 11, 1603-1608 (2011). https://doi.org/10.1021/nl104514m
  17. M. A. Schmidt and P. St. J. Russell, "Long-range spiralling surface plasmon modes on metallic nanowires," Opt. Express 16, 13617-13623 (2008). https://doi.org/10.1364/OE.16.013617
  18. H. Wei and H. Xu, "Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits," Nanophotonics 1, 155-169 (2012).
  19. Q. Li and M. Qiu, "Plasmonic wave propagation in silver nanowires: guiding modes or not?" Opt. Express 21, 8587-8595 (2013). https://doi.org/10.1364/OE.21.008587
  20. Y. Wang, Y. Ma, X. Guo, and L. Tong, "Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates," Opt. Express 20, 19006-19015 (2012). https://doi.org/10.1364/OE.20.019006
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, London, UK, 1985).
  22. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model," Phys. Rev. B 72, 075405 (2005). https://doi.org/10.1103/PhysRevB.72.075405
  23. K. Okamoto, Fundamentals of Optical Waveguides (Elsevier Inc., Oxford, UK, 2006).

Cited by

  1. 3-D Manipulation of ZnO Nanowire Using Optically Activated Thermoplastic Tip on Silica Fiber Taper vol.26, pp.20, 2014, https://doi.org/10.1109/LPT.2014.2342755