Browse > Article
http://dx.doi.org/10.3807/JOSK.2013.17.6.538

Similarity Analysis for the Dispersion of Spiraling Modes on Metallic Nanowire to a Planar Thin Metal Layer  

Lee, Dong-Jin (School of Information and Communication Engineering, Inha University)
Park, Se-Geun (School of Information and Communication Engineering, Inha University)
Lee, Seung-Gol (School of Information and Communication Engineering, Inha University)
O, Beom-Hoan (School of Information and Communication Engineering, Inha University)
Publication Information
Journal of the Optical Society of Korea / v.17, no.6, 2013 , pp. 538-542 More about this Journal
Abstract
We propose a simple model to elucidate the dispersion behavior of spiraling modes on silver nanowire by finding correspondence parameters and building a simple equivalent relationship with the planar insulator-metal-insulator geometry. The characteristics approximated for the proposed structure are compared with the results from an exact solution obtained by solving Maxwell's equation in cylindrical coordinates. The effective refractive index for our proposed equivalent model is in good agreement with that for the exact solution in the 400-2000 nm wavelength range. In particular, when the radius of the silver nanowire is 100 nm, the calculated index shows typical improvements; the average percentage error for the real part of the effective refractive index is reduced to only 5% for the $0^{th}$ order mode (11.9% in previous results) and 1.5% for the $1^{st}$ order mode (24.8% in previous results) in the 400-800 nm wavelength range. This equivalent model approach is expected to provide further insight into understanding the important behavior of nanowire waveguides.
Keywords
Silver nanowire; Planar insulator-metal-insulator geometry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, London, UK, 1998).
2 J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).   DOI   ScienceOn
3 J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, "Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides," Opt. Express 16, 14902-14909 (2008).   DOI
4 S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).   DOI   ScienceOn
5 L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Express 13, 6645-6650 (2005).   DOI
6 P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, "Characterization of long-range surface-plasmon-polariton waveguides," J. Appl. Phys. 98, 043109 (2005).   DOI   ScienceOn
7 P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures," Phys. Rev. B 63, 125417 (2001).   DOI   ScienceOn
8 P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000).   DOI   ScienceOn
9 T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, "Dielectric-loaded plasmonic waveguide-ring resonators," Opt. Express 17, 2968-2975 (2009).   DOI
10 D. Dai and S. He, "A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement," Opt. Express 17, 16646-16653 (2009).   DOI
11 D. Dai and S. He, "Low-loss hybrid plasmonic waveguide with double low-index nano-slots," Opt. Express 18, 17958-17966 (2010).   DOI
12 Y. Su, Z. Zheng, Y. Bian, L. Liu, X. Zhao, J. Liu, T. Zhou, S. Guo, W. Niu, Y. Liu, and J. Zhu, "Metal-coated hollow nanowires for low-loss transportation of plasmonic modes with nanoscale mode confinement," J. Optics-UK 14, 095501 (2012).   DOI   ScienceOn
13 A. V. Krasavin and A. V. Zayats, "Silicon-based plasmonic waveguides," Opt. Express 18, 11791-11799 (2010).   DOI
14 A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005).   DOI   ScienceOn
15 P. B. Catrysse and S. Fan, "Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry," Appl. Phys. Lett. 94, 231111 (2009).   DOI   ScienceOn
16 W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, "Light propagation in curved silver nanowire plasmonic waveguides," Nano Lett. 11, 1603-1608 (2011).   DOI   ScienceOn
17 M. A. Schmidt and P. St. J. Russell, "Long-range spiralling surface plasmon modes on metallic nanowires," Opt. Express 16, 13617-13623 (2008).   DOI
18 H. Wei and H. Xu, "Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits," Nanophotonics 1, 155-169 (2012).
19 Q. Li and M. Qiu, "Plasmonic wave propagation in silver nanowires: guiding modes or not?" Opt. Express 21, 8587-8595 (2013).   DOI
20 Y. Wang, Y. Ma, X. Guo, and L. Tong, "Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates," Opt. Express 20, 19006-19015 (2012).   DOI
21 E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, London, UK, 1985).
22 J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model," Phys. Rev. B 72, 075405 (2005).   DOI   ScienceOn
23 K. Okamoto, Fundamentals of Optical Waveguides (Elsevier Inc., Oxford, UK, 2006).