• Title/Summary/Keyword: cyclic subgroup separability

Search Result 6, Processing Time 0.016 seconds

CYCLIC SUBGROUP SEPARABILITY OF CERTAIN GRAPH PRODUCTS OF SUBGROUP SEPARABLE GROUPS

  • Wong, Kok Bin;Wong, Peng Choon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1753-1763
    • /
    • 2013
  • In this paper, we show that tree products of certain subgroup separable groups amalgamating normal subgroups are cyclic subgroup separable. We then extend this result to certain graph product of certain subgroup separable groups amalgamating normal subgroups, that is we show that if the graph has exactly one cycle and the cycle is of length at least four, then the graph product is cyclic subgroup separable.

WEAK POTENCY AND CYCLIC SUBGROUP SEPARABILITY OF CERTAIN FREE PRODUCTS AND TREE PRODUCTS

  • Muhammad Sufi Mohd Asri;Wan Ainun Mior Othman;Kok Bin Wong;Peng Choon Wong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1375-1390
    • /
    • 2023
  • In this note, we shall show that the generalized free products of subgroup separable groups amalgamating a subgroup which itself is a finite extension of a finitely generated normal subgroup of both the factor groups are weakly potent and cyclic subgroup separable. Then we apply our result to generalized free products of finite extensions of finitely generated torsion-free nilpotent groups. Finally, we shall show that their tree products are cyclic subgroup separable.

CONJUGACY SEPARABILITY OF FREE PRODUCTS WITH AMALGAMATION

  • Kim, Goan-Su
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.521-530
    • /
    • 1997
  • We first prove a criterion for the conjugacy separability of free products with amalgamation where the amalgamated subgroup is not necessarily cyclic. Applying this result, we show that free products of finite number of polycyclic-by-finite groups with central amalgamation are conjugacy separable. We also show that polygonal products of polycyclic-by-finite groups, amalgamating central cyclic subgroups with trivial intersections, are conjugacy separable.

  • PDF

CONJUGACY SEPARABILITY OF GENERALIZED FREE PRODUCTS OF FINITELY GENERATED NILPOTENT GROUPS

  • Zhou, Wei;Kim, Goan-Su;Shi, Wujie;Tang, C.Y.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1195-1204
    • /
    • 2010
  • In this paper, we prove a criterion of conjugacy separability of generalized free products of polycyclic-by-finite groups with a non cyclic amalgamated subgroup. Applying this criterion, we prove that certain generalized free products of polycyclic-by-finite groups are conjugacy separable.

CONJUGACY SEPARABILITY OF CERTAIN GENERALIZED FREE PRODUCTS OF NILPOTENT GROUPS

  • Kim, Goansu;Tang, C.Y.
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.813-828
    • /
    • 2013
  • It is known that generalized free products of finitely generated nilpotent groups are conjugacy separable when the amalgamated subgroups are cyclic or central in both factor groups. However, those generalized free products may not be conjugacy separable when the amalgamated subgroup is a direct product of two infinite cycles. In this paper we show that generalized free products of finitely generated nilpotent groups are conjugacy separable when the amalgamated subgroup is ${\langle}h{\rangle}{\times}D$, where D is in the center of both factors.

CYCLIC SUBGROUP SEPARABILITY OF HNN EXTENSIONS

  • Kim, Goansu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.285-293
    • /
    • 1993
  • In [4], Baumslag and Tretkoff proved a residual finiteness criterion for HNN extensions (Theorem 1.2, below). This result has been used extensively in the study of the residual finiteness of HNN extensions. Note that every one-relator group can be embedded in a one-relator group whose relator has zero exponent sum on a generator, and the latter group can be considered as an HNN extension. Hence the properties of an HNN extension play an important role in the study of one-relator groups [3], [2]. In this paper we prove a criterion for HNN extensions to be .pi.$_{c}$(Theorem 2.2). Moreover, we can prove that certain one-relator groups, known to be residually finite, are actually .pi.$_{c}$. It was known by Mostowski [10] that the word problem is solvable for finitely presented, residually finite groups. In the same way, the power problem is solvable for finitely presented .pi.$_{c}$ groups. Another application of subgroup separability with respect to special subgroups was mentioned by Thurston [12, Problem 15].m 15].

  • PDF