Browse > Article
http://dx.doi.org/10.4134/JKMS.2013.50.4.813

CONJUGACY SEPARABILITY OF CERTAIN GENERALIZED FREE PRODUCTS OF NILPOTENT GROUPS  

Kim, Goansu (Department of Mathematics, Yeungnam University)
Tang, C.Y. (Department of Mathematics, University of Waterloo)
Publication Information
Journal of the Korean Mathematical Society / v.50, no.4, 2013 , pp. 813-828 More about this Journal
Abstract
It is known that generalized free products of finitely generated nilpotent groups are conjugacy separable when the amalgamated subgroups are cyclic or central in both factor groups. However, those generalized free products may not be conjugacy separable when the amalgamated subgroup is a direct product of two infinite cycles. In this paper we show that generalized free products of finitely generated nilpotent groups are conjugacy separable when the amalgamated subgroup is ${\langle}h{\rangle}{\times}D$, where D is in the center of both factors.
Keywords
generalized free products; residually finite; conjugacy separable; nilpotent groups;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Baumslag, A non-Hopfian group, Bull. Amer. Math. Soc. 68 (1962), 196-198.   DOI
2 N. Blackburn, Conjugacy in nilpotent groups, Proc. Amer. Math. Soc. 16 (1965), 143-148.   DOI   ScienceOn
3 J. L. Dyer, Separating conjugates in free-by-finite groups, J. London Math. Soc. (2) 20 (1979), no. 2, 215-221.
4 J. L. Dyer, Separating conjugates in amalgamated free products and HNN extensions, J. Austral. Math. Soc. Ser. A 29 (1980), no. 1, 35-51.
5 B. Fine and G. Rosenberger, Conjugacy separability of Fuchsian groups and related questions, Combinatorial group theory (College Park, MD, 1988), 11-18, Contemp. Math., 109, Amer. Math. Soc., Providence, RI, 1990.
6 E. Formanek, Conjugate separability in polycyclic groups, J. Algebra 42 (1976), no. 1, 1-10.   DOI
7 G. Kim and C. Y. Tang, Conjugacy separability of generalized free products of finite extensions of residually nilpotent groups, In Group Theory (Proc. of the '96 Beijing Int'l Symposium), pages 10-24. Springer-Verlag, 1998.
8 G. Kim and C. Y. Tang, Separability properties of certain tree products of groups, J. Algebra 251 (2002), no. 1, 323-349.   DOI   ScienceOn
9 John C. Lennox and John S. Wilson, On products of subgroups in polycyclic groups, Arch. Math. 33 (1979), no. 4, 305-309.   DOI
10 W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, Pure and Applied Math. Vol. XIII, Wiley-Interscience, New York-London-Sydney, 1966.
11 A. I. Mal'cev, Homomorphisms of finite groups, Ivanov Gos. Ped. Inst. Ucen. Zap. Uchen. Zap. Karel. Ped. Inst. Ser. Fiz.-Mat. Nauk 18 (1958), 49-60.
12 A. W. Mostowski, On the decidability of some problems in special classes of groups, Fund. Math. 59 (1966), 123-135.   DOI
13 G. A. Niblo, Separability properties of free groups and surface groups, J. Pure and Appl. Algebra 78 (1992), no. 1, 77-84.   DOI   ScienceOn
14 V. N. Remeslennikov, Conjugacy in polycyclic groups, Algebra Log. 8 (1969), 712-725.
15 V. N. Remeslennikov, Groups that are residually finite with respect to conjugacy, Siberian Math. J. 12 (1971), 783-792.
16 L. Ribes, D. Segal, and P. A. Zalesskii, Conjugacy separability and free products of groups with cyclic amalgamation, J. London Math. Soc. 57 (1998), no. 3, 609-628.   DOI
17 L. Ribes and P. A. Zalesskii, On the profinite topology on a free group, Bull. London Math. Soc. 25 (1993), no. 1, 37-43.   DOI
18 P. Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. 17 (1978), no. 3, 555-565.
19 C. Y. Tang, Conjugacy separability of generalized free products of surface groups, J. Pure Appl. Algebra 120 (1997), no. 2, 187-194.   DOI   ScienceOn
20 P. F. Stebe, A residual property of certain groups, Proc. Amer. Math. Soc. 26 (1970), 37-42.   DOI   ScienceOn
21 J. S. Wilson and P. A. Zalesskii, Conjugacy separability of certain Bianchi groups and HNN extensions, Math. Proc. Cambridge Philos. Soc. 123 (1998), no. 2, 227-242.   DOI   ScienceOn