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CYCLIC SUBGROUP SEPAEABILITY
OF HNN EXTENSIONS

GOANsU KM

1. Introduction

A group G is said to be cyclic subgroup separable (x.) if, for each
cyclic subgroup (z) of G, and for each element ¢ € G\(z), there exists
N <y G such that g ¢ N(z).

In [4], Baumslag and Tretkoff proved a residual finiteness criterion
for HNN extensions (Theorem 1.2, below). This result has been used
extensively in the study of the residual finitencss of HNN extensions.
Note that every one-relator group can be embiedded in a one-relator
group whose relator has zero exponent sum on & generator, and the lat-
ter group can be considered as an HNN extension. Hence the properties
of an HNN extension play an important role in the study of one-relator
groups [3], [2]. In this paper we prove a criterion. for HNN extensions to
be 7. (Theorem 2.2). Moreover, we can prove -hat certain one-relator
groups, known to be residually finite, are actually ..

It was known by Mostowski [10] that the word problem is solvable
for finitely presented, residually finite groups. In the same way, the
power problem is solvable for finitely presented 7. groups. Another
application of subgroup separability with respect to special subgroups
was mentioned by Thurston [12, Problem 15].

We shall adopt the following uotations and terminology:

We use N <y G to denote that N is a normal subgroup of finite index
in G. “f.g.” means “finitely gencrated”. If G i« a homomorphic image
of G, then we use T to denote the image of z € G in G. We denote by
(At 17 ht = hp, k€ H) an HNN extension of a base group A, with
stable letter ¢, and associated subgroups H anl K, where p : H — Iy
15 an isomorphism.
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Let H be a subgroup of a group G. Then G is saic to be H-separable
if, for each ¢ € G\ H, there exists N <y G such that 2 ¢ NH. If G is
(1)-separable, then we say that G is residually finite (RF). A group G
1s said to be subgroup separable if G is H-separable for all f.g. subgroups
H of G.

For example, it is not difficult to sce that a finite axtension of a free
group is subgroup separable, since a frec group is sibgroup separable
[5]. Hence, we derive the following result:

THEOREM 1.1. [11] Let G = (A ¢t 'ht = hp, h € H) be an HNN
extension and assume that A is a finite group. Then G is a finite
extension of a free group, and so, in particular, G is su bgroup separable.

Next result is equivalent to Baumslag and Tretkoif’s criterion [11].

THEOREM 1.2, (4] Let G = (A,t; t~'ht = hp, h € H) be an HNN
extension. Let A = {S <, A: (5N H)yp =SNK}. Assume that

(@) NseaHS=H and NgepaKS = K.

(1)) FISGAS = “\/
Then G is RF.

Let G and A be as in Theorem 1.2 Then, for eacii S € A, we have
a homomorphism

(1) 05 : G — (A/S,tg; t5'hts =k, T € IT),

where 4 = A/S tég = te and $:HS/S - KS/S is an isomorphism
induced by .

THEOREM 1.3. [11] Let G and A be as in Theorein 1.2, Then G is
RF if and only if Ngep Ker ¢o = (1).
2. On HNN extensions

We recall some basic facts for HNN extensions, whizh may be found
in (9] or [8].
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REMARK 2.1. Let G = (A,t;t7'ht = hp h € H) be an HNN ex-
tension.

(1) Each element ¢ € G may be written in a reduced form ¢ =
aot®rat? - a,_1t"a,, where a; € A, ¢; = +1, and no subwords
t~lht (h € H) or tkt™! (k € K) occur.

(2) Let g = agt" ---t"a, be a reduced form as above. Then we define
the length of g, written ||g||, as the number n of occurrences of t and
t~ling.

(3) An element g = agt** -+ an,_1t*" is said to be cyclically reduced if all
cyclic permutations, a;_1ta; - a,_1t" - aptay ---a;_ot%-1, of ¢
are reduced. Clearly, every element of G is conjugate to a cyclically
reduced form.

Now we are ready to prove our main theorem of this paper.

THEOREM 2.2. Let G = (A, t;t"'ht = hy, h € H) be an HNN ex-
tension. Let A = {P 15 A: (PN H)p=PNK}. Assume that

(@) NpeaHP = H and NpeallP =K,

(b) NpeaP(z)={z) forallz € A
Then G is =,.

Proof. Let g,z be reduced forms in G such that g € (z). Since every
element in G is conjugate to a cyclically reduced form, we may assume
that r is cyclically reduced. Moreover, since i is RF by Theorem 1.2,
we may assume r # 1.

Case 1. Suppose g & (x) is implied by the syllable length of ¢ and r;
that is,

subease 1 {|z|| = 0 and ||g]| > 1,
subcase 2 ||z|| > 1 and ||g|| = 0,
subcase 3 ||z|| > 1, [|g|| # 0 and ||z|| does not divide
For these subcases, we can find S € A such that g g is reduced, ||g”-]|g||
g # 1, and that T is eyclically reduced, |[7]|=:||z||, T # 1. where G =
Gés = (A/S.ts; tg'hts = hg, h € H) is as in (1, p.2). It follows that
¢ (T ) Since G is m. by Theorem 1.1, there exists NV <5 G such that
7 ¢ N(7). Let N be the preimage of N in G. Then g ¢ N(z) and
N <y G, as required.
Case 2. ||z|| = 0 = ||g|. Then, by assumption (b), there exists S € A
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such that ¢ ¢ S(z). Considering G = Gos as before, we have g ¢ (7).
and hence, we can find N <y G such that g ¢ N(z), as required.

Case 3. |lz|| > 1, |lg|| # 0 and llz|l divides ||g||. Since z is cycli-
cally reduced, we may assume that z = aptfra ¢z .. an-1t%, where
4 € A, n > 1, and &4 = +1. Let lgll = m = as and let ¢ =
byt b1t - by _1tmb,, be reduced, where b; € A and 4 = +1. By (a),
we can find Sy € A such that q; ¢ SiHifa, ¢ H oora; ¢ $1K ifa; ¢ K,
for cach 7. Similarly, we can find S2 € A such that b; ¢ S, H if b, ¢ H,
orb; € SoK ifb; ¢ K, for cach j. Now, since ¢ 712 % 1 # gz* and since
G is RF (by Theorem 1.2), there exists M <y G such that g7 1z* ¢ Af
aud gr* ¢ M. Then MNA€ A and P — 5:MSN(Min4) e A. Since
P C $1nS,, 7is reduced and T is cyclically reduced, where G = G 4.
Moreover, we have [|g]| = |lg]| = m = ns = ]l = |7°]] and g # 7+,
where G = G¢p. It follows that g & (7). Then, as in Case 1, we can
find N <y G such that g ¢ N(z). This completes the proof.

COROLLARY 2.3. Suppose that H and K are finite and that A is
Te. Then the HNN extension G = (A,t;t7 ht = hp, h = HY is 7.

Proof. To apply Theorem 2.2, we prove (a) and (b) in the theoreni.
To prove (a), let @ € A\H. Since 4 is RF and H, K wre finite, there
exists I’ <y A such that HaNP =Qand PNH = 1= p N K. Then
P € Aand a ¢ HP. This proves that ApeaHP = H. Similarly,
ﬂpga[fp =K.

To prove (b), let ¢,z € A4 be such that a ¢ (z). Since H and K
are finite and A is 7, there exists <y A such that « ¢ P(z) and
PN H=1=PnNK, hence P € A. This proves (b). Therefore G is 7,

by Theorem 2.2.

COROLLARY 2.4. Ifp: 4 — Aijsan automorphism aaxd A is f.g.. 7.,
and H-separable, then G = (A, t;t7Tht = hep, h e H) is 7.

Proof. To apply Theorem 2.2. we check conditions (@) and (b) in the
theorem.

To prove (a), let a € A\H. Since 4 is H-separabl:, there exists
N <y A such that a ¢ HN. Now A is f.g. It follows that there exists a
characteristic subgroup P of A such that P C N and F <7 A. Hence
a ¢ HP. Since P is characteristic in A, we have Py = P. Thus
(PN H)p=PnNK. It follows that P € A and g ¢ HP. proving (a).
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To prove (b), let a,z € A be such that ¢ ¢ (z). Since A4 is 7,
there exists N <y A such that a ¢ N(z). s before we can find a
characteristic subgroup P of 4 such that P ¢ N and P « ¢ A. Then
P € A and a € P(x) as before. This proves (b). Hence G is m. by
Theorem 2.2.

COROLLARY 2.5. Let ¢ : A -+ A be an inney automorphism and sup-
pose that A is =, and H-separable. Then (A, t ¢ 1ht = hy, h € H) is

~
e

Proof. We note that (NN H)g = NN K tor each N <15 A. Thus,
N e A, if N 95 4. Now, the proof is similar to that of the above
corollary.

In the above corollaries, H-scparability is necessary in the following
sense (see [11, Theorem 1)):

COROLLARY 2.6. Let A be .. Then the HNN extension G =
(A,t;t'ht = h, h € H) is . if, and only if, A is H-separable.

For the rest of this section, we recall the homomorphism ¢ given
by (1, p.2). We extend Theorem 1.3.

THEOREM 2.7. Let G and A be as in Theoem 2.2. For a given f.g.
subgroup L of G, G is L-separable if, and only if, Nsea(Ker ¢5)L = L.

Proof. (=) Let g ¢ L, where ¢ € G. The, by assumption, there
exists P € A such that ¢ ¢ (Ker ¢p)L. Thus gép ¢ Lép and Lép
is f.g. Since G¢p is subgroup separable by Theorem 1.1, there exists
N <15 G¢p such that gop ¢ 7\?([1{:5 p). Let N be the preimage of N in
G. Then N <y G and g € NL, as required.

(==>) Assume that G is L-separable and that ¢ ¢ L. Then there
exists N <ty G such that g ¢ Ni. Let P =N 1 A. Then P <y A and
(PNH)p = PN K, since N <if G. Thus, Ker ¢p € N, and hence,
g € (Ker ¢p)L. This proves that Ngea(Ker o)L © L. Hence,
NsealKer ¢g)L = L.

COROLLARY 2.8. Let G and A be as in Theorem 2.2. Then G is w.
if, and only if, Nsea (Ker ¢5){g) = (g) for all g € G.
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COROLLARY 2.9. Let G and A be as in Theorem 2.2 Assume that
NseaHS = H and NseaK'S = K. Then G is =. if, and only if,
Nsea (Ker ¢g){z) = (z) forall z € A.

Proof. This follows directly from Theorem 2.2 and Corollary 2.8.

Finally we note that Larsen [7] showed that HNN extensions of fg.
free groups with cyclic associated subgroups have solvable power prob-
lem. A finitely presented n, group has solvable power problem. But,
as in [1], the group (a,b; b~ 'ab = a*} is not m...

3. One-relator groups

In (3], [2], Allenby and Tang proved that the one--elator groups in
this section are residually finite. Using our criterion, we prove that these
groups are w.. First we note the following results for the generalized
free product of groups.

THEOREM 3.1. 6] Let G = A*y B be a generalized free prod-
uct of the groups A and B, amalgamating the subgroup H, and let
A={(P.Q):Pa;4, Q<a;Band PNH = QN H}. Assume that

(1} m(p’Q)Q:APH = H and H(P,Q]EAQH = H
(2) Npgyea Plx) = () and Nipgyea®ly) = {y) forall r ¢ A, y € B.
Then G is 7.

A group G is said to be (x)-potent if, for each pesitive integer n,
there exists N <y G such that Nz has order exactly n in G/N. The
following result is analogous to Theorem A-T in [2].

COROLLARY 3.2. Let A and B be =, and let A be (efY-potent. for
some integer f. Then the generalized free product A *ey B of A and
B, amalgamating (¢), is «,.

Proof. To apply the above theorem, we prove the fcllowing facts:

1. For each N <15 A, there exists (P. Q)€ A such that PC N.

Let NN (c) = (c*). Since ¢* ¢ (cf%), for all 1 <7 < fk, there exists
Ny <y A such that ¢' ¢ Ny(c/*), for all 7. Thus N, n ‘) = (IR for
some t. Similarly, there exists M, <y B such that ¢ ¢ M (c/*), for

all 1 <7 < fkt. Thus M, N (c) = (eI*y for some m. Since A is
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N ey = (ef*t™), Let
(efk™)y = QN {c), and

(cf)-potent, there exists No <ty A such that A
P=NNN NN;and @ = M,. Then PN {e) =
hence, (P,Q) € A and P C N.
2. For each M <1y B, there exists (P,Q) € \ such that Q C M.
Let M N {c) = {c*). Let Ny, Ny, and M, be as above. Then P =
NN Ny and Q = M N M, satisfy our requirenient.

2

Now it is not difficult to apply Theorem 3.1

The residual finiteness of the groups G in the next two results was
known to Allenby and Tang [3]. Using Theorem 2.2, we prove that

these groups are actually «,.

THEOREM 3.3. Let G = {a,b;(r(a,b))!), wheret > 1 and r(a.b) is a
cychically reduced word on a and b, with b exponent sum equal to zero,
that 1s not a proper power. Regarding G as an HNN extension by (b)
of the base group A = (ap,apyq,...,au; (F(a,))), where a; = b~ tabt,
if we find that both ay and ay occur only one: in ¥(ay), (where L and
M are respectively the smallest and largest indlices occurring in 7(a,)),
then G is n..

Proof. First we note that if # = 1, then G 1 a cyclic extension of a
f.g. free group which is 7. by [1]. As explained in [3], G has associated
subgroups H = {ap,apyy,... .ary- ) and KN = {(ap 4y, ... .ay), where
w: H — K is the isomorphism defined by a;0 = a,4. In 3], we find
the following facts, for ¢ > 2:

1. A has the property (¢) in Theorem 2.2.
2. If P is a characteristic subgroup of A vsith finite index, then

(POiHyy =PNK.

3. 4 is subgroup separable.

Thus we need only show (4) in Theorem 2.2. For this, let g, r € A
be such that ¢ ¢ (r). Since A is 7, there exists N <15 4 such that
g ¢ N{r). Note that 4 is f.g. Hence, we can find a characteristic
subgroup £ of A with finite index in 4 such that P ¢ N. This proves
{b) by 2 above. Therefore G is 7...

COROLLARY 3.4. The group G = (a,b;{a, b1, .. b* ") is n. for

t > 1.
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Proof. As explained in [3, Lemma 4.2], we note that [a, bEv L bR
can be expressed as a product a;latza;;l “+-Qyyn, Where a; = b~iabt,
and the 2" suffices t; are precisely the 2" partial sums of {ky,... , kn},
cach appearing once. Hence, the corollary follows frorn Theorem 3.3.

Because of Corollary 3.2, and the similarity between Theorem 1.2
and Theorem 2.2, with only minor change of the proofs in [3] and [2],
we can prove that the groups in the following theorems are still .
We denote by u(b;) and v(b;), words on the letters b;, for the following
theorems.

THEOREM 3.5. The group G = {a, by, ..., bx; (a™ u(b;)atv(b;))?) is
m. fort > 2.

We note that the result for [ = 1 in the above thecrem was claimed
by Shirvani (see footnote in [2}).

THEOREM 3.6. The group G = {(cy,60,... ,cm,diidy, ... dy;
[u(c;), v(d;))*) is w. for s > 1.

THEOREM 3.7. The group G = {cy,¢o, .. Cm,didy, ... dy;
(u(c,—)"v(dj)g)’) is w. for s > 1 and o # 0.

THEOREM 3.8. The group G = (c1,¢2,...,0m,dy,dy, . oo dy;
(u(ei)@v(d;)Pulc,)0(d;)®)) is 7w for s > 1, if (u,v; (uvPure®)*) is
Te.

A word w is said to be positive, if only non-negat:ve powers of the
generators of the group occur in w.

THEOREM 3.9 Let G = (g, h,... ,k; (uv™1)?*), where u and » are
positive words on the generators g, h,... ,k and where each generator
appears in uv ™! with zero exponent sum. Then, for s > 1, G is 7.

ACKNOWLEDGEMENT. Most results in this paper were first settled
in the author’s Ph. D. thesis, submitted to the University of Waterloo.

References

(1] R. B. J. T. Allenby and R. J. Gregorac, On locally exiended residually finite
8 y
groups, In Lecture Notes in Mathematics, vol. 319, pages 9 17, Springer Verlag,
New York, 1973,

292



(2]

Cyclic Subgroup Separability of HNN Extensions

R. B. J. T. Allenby and C. Y. Tang, Residual finiteness of certain one-relator
groups: exlensions of resulls of Gilbert Baums./ag, Math. Proc. Camb. Phil.
Soc., 97:225-230, 1985,

R.B.J. T. Allenby and C. Y. Tang, The residual finiteness of some one-relator
groups with torsion, J. Algebra, 71(1):132-140, 1981,

B. Baumslag and M. Tretkoff, Residually finite FNN eztensions, Comm. Alge
bra, 6{2):179-194, 1978,

M. Hall, Jr., Coset representations in free grouss, Trans. Amer. Math. Soc.,
67421432, 1944,

G. Kim, Cyclic subgroup separahility of generaliz:d free products, To appear in
Canad. Math. Bull.

L. Larsen, The conjugacy problem and cyclic HVN constructions, J. Austral.
Math. Soc., 23:385- 401, 1977.

R. €. Lyndon and P. E. Schupp, Combinatorial group theory, Ergebnisse der
Mathematik Bd. 89, Springer-Verlag, Berlin-Heidelberg-New york, 1977.

W. Magnus, A. Karrass, and D. Solitar, Combinctormal yroup theory, Pure and
Applied Math. Vol. XIII, Wiley-Interscience, Nev' York-London Sydney, 1966,
A. W, Mostowski, On the decidabilily of some problems in special classes of
groups, Fund. Math., 58:123-135, 1966.

M. Shirvani, On residually finate HINN-extensio s, Arch. Math., 44:110-115,
1985,

W. F. Thurston, Three dimensional manifolds, klewnian groups and hyperbolic
geornetry, Bull. Amer. Math. Soc., 6:357-381, 19¢.2.

DEPARTMENT OF MATHEMATICS, KANGNUNG NATIONAL UNIVERSITY, KANGNUNG
210-702, KOREA

293



