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CONJUGACY SEPARABILITY OF CERTAIN GENERALIZED

FREE PRODUCTS OF NILPOTENT GROUPS

Goansu Kim and C. Y. Tang

Abstract. It is known that generalized free products of finitely gen-
erated nilpotent groups are conjugacy separable when the amalgamated
subgroups are cyclic or central in both factor groups. However, those gen-
eralized free products may not be conjugacy separable when the amalga-
mated subgroup is a direct product of two infinite cycles. In this paper we
show that generalized free products of finitely generated nilpotent groups
are conjugacy separable when the amalgamated subgroup is 〈h〉 × D,
where D is in the center of both factors.

1. Introduction

Let S be a subset of a group G. Then G is said to be S-separable if for
each x ∈ G\S, there exists a normal subgroup Nx of finite index in G such
that x 6∈ NxS. Equivalently, S is a closed subset of G in the profinite topology
of G. If S = {1}, then G is residually finite (RF ). If for each x ∈ G, G is
{x}G-separable, where {x}G is the conjugacy class of x in G, then G is called
conjugacy separable (c.s.). Residual and separability properties are of interest
to both group theorists and topologists. They are related to the solvability of
the word problem, the conjugacy problem and the generalized word problem
(Mal’cev [11] and Mostowski [12]). Topologically, they are related to problems
on the embeddability of equivariant subspaces in their regular covering spaces
(Scott [18], Niblo [13]).

Blackburn [2] first proved that finitely generated nilpotent groups are conju-
gacy separable. Stebe showed that free products of conjugacy separable groups
are conjugacy separable [19], hence free groups are conjugacy separable. For-
manek [6] (also Remeslennikov [14]) showed that polycyclic-by-finite groups
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are also conjugacy separable. Dyer [3] showed that free-by-finite groups are
conjugacy separable. There are a number of other results on conjugacy separa-
bility. In particular, Fine and Rosenberger [5] proved that Fuchsian groups are
conjugacy separable. Wilson and Zalesskii [21] showed that the Bianchi groups
PSL2(Od), where Od is the ring of integers of Q(

√
−d) for d = 1, 2, 7, 11, are

conjugacy separable.
In general, the generalized free product of two conjugacy separable groups

is not conjugacy separable. Baumslag [1] constructed an example of a gener-
alized free product of two finitely generated nilpotent groups amalgamating a
direct product of two cycles (see Example 2.1 below) which is not even Hop-
fian, whence not conjugacy separable. However, Dyer [4] showed that the free
product of two free groups –or two finitely generated nilpotent groups– amal-
gamating a cyclic subgroup is conjugacy separable. Tang [20] showed that
generalized free products of surface groups amalgamating a cyclic subgroup
are conjugacy separable. Ribes, Segal and Zalesskii [16] showed that gener-
alized free products of polycyclic groups amalgamating cyclic subgroups are
conjugacy separable.

As mentioned above, generalized free products of finitely generated nilpo-
tent groups amalgamating a cyclic subgroup are conjugacy separable. But
those generalized free products amalgamating a direct product of two cyclic
subgroups may not be conjugacy separable. However, those generalized free
products amalgamating a central subgroup are conjugacy separable [8]. In this
paper, we find some conditions to derive that generalized free products of con-
jugacy separable groups amalgamating 〈h〉 × D, where D is in the center of
both factors, are conjugacy separable. Using this, we show that generalized free
products of finitely generated nilpotent groups amalgamating 〈h〉 ×D, where
D is in the center of both factors, are conjugacy separable.

2. Preliminaries

Throughout this paper we use standard notation and terminology.
If A,B are groups, G = A ∗H B denotes the generalized free product of A

and B amalgamating the subgroup H . If x ∈ G = A ∗H B, then ‖x‖ denotes
the free product length of x in G.

x ∼G y means that x and y are conjugate in G.
Z(G) is the center of G.
CH(u) = {h ∈ H | hu = uh} denotes the centralizer of u in H .
RF is an abbreviation for “residually finite”.
The following example shows that the generalized free product of two finitely

generated free nilpotent groups amalgamating a subgroup isomorphic to Z×Z

may not be residually finite.

Example 2.1 ([1]). Let A = 〈a, b; [a, b, b] = [a, b, a] = 1〉 and B = 〈c, d; [c, d, d]
= [c, d, c] = 1〉. Let H = 〈a, [a2, b]〉 and K = 〈[c, d], c〉. Clearly, A,B are
free-nilpotent groups of class 2, [a2, b] ∈ Z(A), and [c, d] ∈ Z(B). Let G be
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the generalized free product of A and B amalgamating H and K by letting
a = [c, d] and [a2, b] = c. Then G is non-Hopfian, whence G is not conjugacy
separable.

Theorem 2.2 ([10, Theorem 4.6]). Let G = A ∗H B and let x ∈ G be of

minimal length in its conjugacy class. Suppose that y ∈ G is cyclically reduced

and that x ∼G y.
(1) If ||x|| = 0, then ||y|| ≤ 1 and if y ∈ A, then there is a sequence

h1, h2, . . . , hr of elements in H such that y ∼A h1 ∼B h2 ∼A · · · ∼A(B) hr = x.
(2) If ||x|| = 1, then ||y|| = 1 and either x, y ∈ A and x ∼A y or x, y ∈ B

and x ∼B y.
(3) If ||x|| ≥ 2, then ||x|| = ||y|| and y ∼H x∗, where x∗ is a cyclic permuta-

tion of x.

3. Double coset separability

In this section we prove some results on double coset separability.

Definition 3.1. Let G be a group and H,K be subgroups of G. Then G is
said to be HK-double coset separable if for each x ∈ G, G is HxK-separable.
In particular, we say that G is H-double coset separable if G is HxH-separable
for all x ∈ G.

Clearly, if G is H-double coset separable, then G is H-separable. In partic-
ular, free groups [17] and finitely generated nilpotent groups [9] are H-double
coset separable for each finitely generated subgroup H .

Lemma 3.2. Let A be a group and h ∈ A with |h| = ∞. Suppose a ∈ A
and a 6= hiahj for all integers i, j except i = j = 0. If A is 〈hn〉-double coset

separable, then there exists M�fA such that in A = A/M , if a = h
i
ah

j
, then

n | i, j.
Proof. We note that for 0 ≤ i1, j1 ≤ n − 1, if h−i1ah−j1 ∈ 〈hn〉a〈hn〉, then
i1 = j1 = 0. Hence h−i1ah−j1 6∈ 〈hn〉a〈hn〉 for all 0 ≤ i1, j1 ≤ n − 1 except
i1 = j1 = 0. Since A is 〈hn〉-double coset separable, there exists M�fA such
that h−i1ah−j1 6∈ M〈hn〉a〈hn〉 for all 0 ≤ i1, j1 ≤ n − 1 except i1 = j1 = 0.

Then in A = A/M , if a = h
i
ah

j
, then n | i, j. �

Definition 3.3. Let G be a group and h ∈ G. Then G is called 〈h〉-self-
conjugate if hi ∼G hj implies i = j.

For example, free groups and finitely generated nilpotent groups are 〈h〉-self-
conjugate for each element h of infinite order (see [4]).

Definition 3.4. Let G be a group and h ∈ G with |h| = ∞. Then we say
that G satisfies (C′) for 〈h〉 if there exists an integer δ > 0 such that for each
n > 0, there exists M�fG depending on n such that M ∩ 〈h〉 = 〈hnδ〉 and if
Mhi ∼G/M Mhj, then Mhi = Mhj.
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Theorem 3.5. Let G = A∗〈h〉B, where |h| = ∞. Let A,B be 〈h〉-self-conjugate
and 〈hn〉-double coset separable for each integer n > 0. Suppose A,B satisfy

the condition (C′) for 〈h〉. Then G is 〈h〉-double coset separable.

Proof. Let x, y ∈ G and y 6∈ 〈h〉x〈h〉.
Case 1. ‖x‖ 6= ‖y‖. Suppose x = a1b1 · · · anbn and y = c1d1 · · · cmdm,

where ai, cj ∈ A\〈h〉 and bi, dj ∈ B\〈h〉. Since A,B are 〈h〉-double coset
separable, A,B are 〈h〉-separable. Hence there exist M1�fA and N1�fB such
that ai, cj 6∈ M1〈h〉 and bi, dj 6∈ N1〈h〉 for all i, j. Let M1 ∩ 〈h〉 = 〈hs1〉 and
N1∩〈h〉 = 〈hs2〉 for some integers s1, s2. By (C′), there exists an integer δ1 > 0
such that for each n > 0, there existsM ′

�fA such that M ′∩〈h〉 = 〈hnδ1〉 and if
M ′hi ∼A/M ′ M ′hj , thenM ′hi = M ′hj . Similarly, there exists an integer δ2 > 0

such that for each n > 0, there exists N ′
�fB such that N ′ ∩ 〈h〉 = 〈hnδ2〉 and

if N ′hi ∼B/N ′ N ′hj , then N ′hi = N ′hj. Hence considering n = s1s2δ2, there

exists M2�fA such that M2∩〈h〉 = 〈hs1s2δ1δ2〉 and if M2h
i ∼A/M2

M2h
j , then

M2h
i = M2h

j. Similarly, there exists N2�fB such that N2 ∩ 〈h〉 = 〈hs1s2δ1δ2〉
and if N2h

i ∼B/N2
N2h

j, then N2h
i = N2h

j . Let M = M1 ∩ M2 and N =

N1 ∩ N2. Clearly, M ∩ 〈h〉 = 〈hs1s2δ1δ2〉 = N ∩ 〈h〉. Then in G = A ∗〈h〉 B,

where A = A/M and B = B/N , we have ‖x‖ = ‖x‖ and ‖y‖ = ‖y‖. Since
‖x‖ 6= ‖y‖, ‖x‖ 6= ‖y‖. This implies that y 6∈ 〈h〉x〈h〉. Since G is free-by-finite,
it is residually finite. We can find P�fG such that y 6∈ P 〈h〉x〈h〉. Let P be

the preimage of P in G. Then P�fG and y 6∈ P 〈h〉x〈h〉.
The case when ‖x‖ = 0 and ‖y‖ 6= 0 (or ‖x‖ 6= 0 and ‖y‖ = 0) also can be

similarly considered.
Case 2. ‖x‖ = ‖y‖ ≤ 1. If x ∈ A\〈h〉 and y ∈ B\〈h〉, then the above

method can be applied. So we suppose x, y ∈ A. Since A is 〈h〉-double coset
separable, there exists M1�fA such that y 6∈ M1〈h〉x〈h〉. Let M1 ∩ 〈h〉 =
〈hs1〉 for some integer s1. By (C′), there exist M2�fA and N2�fB such that
M2 ∩ 〈h〉 = 〈hs1δ1δ2〉 = N2 ∩ 〈h〉. Let M = M1 ∩ M2 and N = N2. Then

in G = A/M ∗〈h〉 B/N , y 6∈ 〈h〉x〈h〉. Hence, as before, we can find P�fG

such that y 6∈ P 〈h〉x〈h〉. Let P be the preimage of P in G. Then P�fG and
y 6∈ P 〈h〉x〈h〉.

Case 3. ‖x‖ = ‖y‖ ≥ 2. Suppose x = a1b1 · · · anbn and y = d1c1 · · · dncn,
where ai, ci ∈ A\〈h〉 and bi, dj ∈ B\〈h〉. This case can be similarly handled as
in Case 1.

Suppose x = a1b1 · · ·anbn and y = c1d1 · · · cndn, where ai, ci ∈ A\〈h〉 and
bi, di ∈ B\〈h〉.

(1) Suppose there exists i such that ci 6∈ 〈h〉ai〈h〉 (or di 6∈ 〈h〉bi〈h〉). As in
Case 1 above, we can find M�fA and N�fB such that in G = A/M ∗〈h〉 B/N ,

ci 6∈ 〈h〉ai〈h〉, ‖x‖ = ‖x‖ and ‖y‖ = ‖y‖. Then y 6∈ 〈h〉x〈h〉. For, if y ∈ 〈h〉x〈h〉,
then there exist integers αi, µi such that

c1 = h
−α1

a1h
µ1
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d1 = h
−µ1

b1h
α2

...

ci = h
−αi

aih
µi

...

dn = h
−µn

bnh
αn

.

Hence ci ∈ 〈h〉ai〈h〉, a contradiction. Therefore, y 6∈ 〈h〉x〈h〉. As before, we
can find P�fG such that y 6∈ P 〈h〉x〈h〉.

(2) Suppose ck ∈ 〈h〉ak〈h〉 and dk ∈ 〈h〉bk〈h〉 for all k. Then there exists
i such that c1d1 · · · ci ∈ 〈h〉a1b1 · · · ai〈h〉 and c1d1 · · · cidi 6∈ 〈h〉a1b1 · · ·aibi〈h〉
(or, similarly, c1d1 · · · di ∈ 〈h〉a1b1 · · · bi〈h〉 and c1d1 · · · dici+1 6∈ 〈h〉a1b1 · · ·
biai+1〈h〉). Let c1d1 · · · ci = hλ1a1b1 · · · aihλ2 and di = hβ1bih

β2 for some
integers λ1, λ2, β1, β2. Hence a1b1 · · · aihλ2+β1bi 6∈ 〈h〉a1b1 · · · aibi〈h〉. For con-
venience, let w = a1b1 · · · ai. Then whλ2+β1bi 6∈ 〈h〉wbi〈h〉. Hence hλ2+β1 6∈
C〈h〉(w) · C〈h〉(bi). Let C〈h〉(w) = 〈hs〉 and C〈h〉(bi) = 〈ht〉. Then hλ2+β1 6∈
〈hs〉〈ht〉.

(a) s = 0 and t 6= 0 (or s 6= 0 and t = 0). Clearly, hλ2+β1 6∈ 〈ht〉. Since
A is 〈h〉-self-conjugate and C〈h〉(bi) = 〈ht〉, we have b−1

i hj1bi 6∈ 〈h〉 for all
0 ≤ j1 < t. Since C〈h〉(w) = 1, there exists r such that C〈h〉(ar) = 1 for
some 1 ≤ r ≤ i (or similarly, C〈h〉(br) = 1 for some 1 ≤ r < i). This implies

that ar 6= hjarh
j′ for all j, j′ except j = j′ = 0. Since A is 〈hn〉-double coset

separable for each n > 0, A is 〈hn〉-separable for each n > 0. Hence there
exists M1�fA such that hλ2+β1 6∈ M1〈ht〉, ak 6∈ M1〈h〉 for all 1 ≤ k ≤ n and

if M1ar = M1h
jarh

j′ , then t | j, j′ (Lemma 3.2). Since B is 〈h〉-self-conjugate
and C〈h〉(bi) = 〈ht〉, we have b−1

i hj1bi 6∈ 〈h〉 for all 0 ≤ j1 < t. Hence there

exists N1�fB such that bk 6∈ N1〈h〉 for all 1 ≤ k ≤ n and b−1
i hj1bi 6∈ N1〈h〉 for

all 0 ≤ j1 < t. Let M1 ∩ 〈h〉 = 〈hs1〉 and N1 ∩ 〈h〉 = 〈hs2〉 for some integers
s1, s2. By (C′), there exists M2�fA such that M2 ∩ 〈h〉 = 〈hs1s2δ1δ2〉 and if

M2h
j ∼A/M2

M2h
j′ , then M2h

j = M2h
j′ . Similarly, there exists N2�fB such

that N2 ∩ 〈h〉 = 〈hs1s2δ1δ2〉, and if N2h
j ∼B/N2

N2h
j′ , then N2h

j = N2h
j′ .

Let M = M1 ∩M2 and N = N1 ∩N2. Then in G = A/M ∗〈h〉 B/N , we have

‖x‖ = ‖x‖ and wh
λ2+β1

bi 6∈ 〈h〉wbi〈h〉. For, if wh
λ2+β1

bi ∈ 〈h〉wbi〈h〉, then
there exist integers αi, µi such that

a1 = h
−α1

a1h
µ1

b1 = h
−µ1

b1h
α2

...

ar = h
−αr

arh
µr

(3.1)
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...

ai = h
−αi

aih
µi

h
λ2+β1

bi = h
−µi

bih
αi

.

From the first equation in (3.1), we have h
α1 ∼A h

µ1

. By the choice of M2,
M2h

α1 = M2h
µ1 . Hence hα1−µ1 ∈ M2 ∩ 〈h〉 ⊂ M1 ∩ 〈h〉. Thus hα1−µ1 ∈

M1 ∩ M2 = M , whence h
α1

= h
µ1

. Similarly, h
µ1

= h
α2

, . . . , h
αi

= h
µi

.
Hence, h

α1

= h
µ1

= · · · = h
µi

. By the choice of r, we have t | αr, µr. Hence

h
µi

= h
µr ∈ 〈ht〉. From the last equation of (3.1), we have b

−1

i h
λ2+β1+µi

bi =

h
αi

. By the choice of N1, t | λ2 + β1 + µi. Hence h
λ2+β1+µi

= h
αi ∈ 〈ht〉.

Thus h
λ2+β1

= h
αi−µi ∈ 〈ht〉, a contradiction by the choice of M1. Thus

wh
λ2+β1

bi 6∈ 〈h〉wbi〈h〉, and hence c1d1 · · · cidi 6∈ 〈h〉a1b1 · · · aibi〈h〉. Therefore,
y 6∈ 〈h〉x〈h〉. Since G = A/M ∗〈h〉 B/N is residually finite, we can find P�fG

such that y 6∈ P 〈h〉x〈h〉.
(b) s = 0 and t = 0. Clearly, hλ2+β1 6= 1. Since C〈h〉(w) = 1, there

exists r such that C〈h〉(ar) = 1 for some 1 ≤ r ≤ i (or C〈h〉(br) = 1 for some

1 ≤ r < i). Clearly, hλ2+β1 6∈ h2(λ2+β1). As in (a) above, ar 6= hjarh
j′

for all j, j′ except j = j′ = 0. Since A is 〈hn〉-double coset separable, A
is 〈h2(λ2+β1)〉-separable and 〈h〉-separable. Hence there exists M1�fA such

that hλ2+β1 6∈ M1〈h2(λ2+β1)〉, ak 6∈ M1〈h〉 for all 1 ≤ k ≤ n and if M1ar =

M1h
jarh

j′ , then 2(λ2+β1) | j, j′ (Lemma 3.2). Now, since t = 0, C〈h〉(bi) = 1.

Hence bi 6= hjbrh
j′ for all j, j′ except j = j′ = 0. As before, there exists

N1�fB such that bk 6∈ N1〈h〉 for all 1 ≤ k ≤ n and N1bi = N1h
jbih

j′ . Then
2(λ2 + β1) | j, j′. Let M1 ∩ 〈h〉 = 〈hs1〉 and N1 ∩ 〈h〉 = 〈hs2〉 for some integers
s1, s2. By (C′), there exists M2�fA such that M2 ∩ 〈h〉 = 〈hs1s2δ1δ2〉 and if

M2h
j ∼A/M2

M2h
j′ , then M2h

j = M2h
j′ . Similarly, there exists N2�fB such

that N2 ∩ 〈h〉 = 〈hs1s2δ1δ2〉, and if N2h
j ∼B/N2

N2h
j′ , then N2h

j = N2h
j′ .

Let M = M1 ∩M2 and N = N1 ∩N2. Then in G = A/M ∗〈h〉 B/N , we have

‖x‖ = ‖x‖ and wh
λ2+β1

bi 6∈ 〈h〉wbi〈h〉. For, if wh
λ2+β1

bi ∈ 〈h〉wbi〈h〉, then
there exist integers αi, µi such that

a1 = h
−α1

a1h
µ1

b1 = h
−µ1

b1h
α2

...

ar = h
−αr

arh
µr

(3.2)

...

h
λ2+β1

bi = h
−µi

bih
αi

.
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As in (a) above, from the equations in (3.2), we have h
α1

= h
µ1

= · · · = h
µi

.

By the choice of r, 2(λ2 + β1) | αr, µr. Hence h
µi

= h
µr ∈ 〈h2(λ2+β1)〉. From

the last equation of (3.2), we have h
λ2+β1+µi

= h
αi

and 2(λ2 + β1) | αi. Hence

we have h
λ2+β1

= h
αi−µi ∈ 〈h2(λ2+β1)〉, a contradiction. Thus wh

λ2+β1

bi 6∈
〈h〉wbi〈h〉, and hence c1d1 · · · cidi 6∈ 〈h〉a1b1 · · ·aibi〈h〉. Therefore, y 6∈ 〈h〉x〈h〉.
Since G = A/M ∗〈h〉 B/N is residually finite, we can find P�fG such that

y 6∈ P 〈h〉x〈h〉.
(c) s 6= 0 and t 6= 0. Clearly, w−1hi1w 6∈ 〈h〉 for all 1 ≤ i1 < s and b−1

i hj1bi 6∈
〈h〉 for all 1 ≤ j1 < t. Let m = gcd{s, t}. Then hλ2+β1 6∈ 〈hs〉〈ht〉 = 〈hm〉. As
before, we can find M�fA and N�fB such that in G = A/M ∗〈h〉 B/N ,

(1) ‖x‖ = ‖x‖ and h
λ2+β1 6∈ 〈hm〉 = 〈hs〉〈ht〉,

(2) for each 1 ≤ k ≤ i, a−1
k h

ik
ak 6∈ 〈h〉 for all 1 ≤ ik < nk, where C〈h〉(ak) =

〈hnk〉,
(3) for each 1 ≤ k ≤ i, b

−1

k h
jk
bk 6∈ 〈h〉 for all 1 ≤ jk < mk, where C〈h〉(bk) =

〈hmk〉, and
(4) if h

i ∼A(B) h
j
, then h

i
= h

j
.

Then we have wh
λ2+β1

bi 6∈ 〈h〉wbi〈h〉. For, if wh
λ2+β1

bi ∈ 〈h〉wbi〈h〉, then
there exist integers αi, µi such that the equations in (3.2) hold. As before,

we have h
α1

= h
µ1 ∈ C〈h〉(a1). Similarly, h

µ1

= h
α2 ∈ C〈h〉(b1), . . . , h

αi

=

h
µi ∈ C〈h〉(ai). Hence h

α1

= h
µ1

= · · · = h
µi ∈ C〈h〉(a1b1 · · · ai) = 〈hs〉.

From the last equation of (3.2), h
λ2+β1+µi

= h
αi ∈ C〈h〉(bi) = 〈ht〉. Hence

h
λ2+β1

= h
αi−µi ∈ 〈hs〉〈ht〉, a contradiction. Thus wh

λ2+β1

bi 6∈ 〈h〉wbi〈h〉,
and hence c1d1 · · · cidi 6∈ 〈h〉a1b1 · · · aibi〈h〉. Therefore, y 6∈ 〈h〉x〈h〉. Since
G = A/M ∗〈h〉 B/N is residually finite, we can find P�fG such that y 6∈
P 〈h〉x〈h〉. �

Lemma 3.6. Let G be a group and N be a finite normal subgroup of G. Let

S be a subset of G. Suppose that G is S-separable. Then the group G/N is

S/N -separable, where S/N = {sN | s ∈ S}.
Proof. Let xN 6∈ S/N . Then xn 6∈ S for every n ∈ N . Therefore, since G is
S-separable, there exists Mn�fG such that xn 6∈ MnS. Let M = ∩n∈NMn.
Then M�fG and xn 6∈ MS for all n ∈ N . Thus xN 6∈ (MN/N)(S/N) and
MN/N�fG/N . �

Definition 3.7. Let G be a group and 〈h〉 × D be a subgroup of G with
|h| = ∞. Then we say that G satisfies (C) for 〈h〉×D if there exists an integer
δ > 0 such that for each n > 0, there exists M�fG depending on n such that
D ⊂ M , M ∩ 〈h〉 = 〈hnδ〉 and if Mhi ∼G/M Mhj, then Mhi = Mhj.

It is easy to see that if G satisfies (C) for 〈h〉 ×D, then G satisfies (C′) for
〈h〉.
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Corollary 3.8. Let G = A ∗H B with H = 〈h〉 × D, where |h| = ∞ and

D ⊂ Z(A) ∩ Z(B) is finite. Suppose A,B are 〈h〉-self-conjugate, 〈hn〉-double
coset separable for each n > 0. Let A,B satisfy the condition (C) for 〈h〉 ×D.

Then G is H-double coset separable.

Proof. Let y, x ∈ G and y 6∈ HxH . Let G = G/D. Then G = A ∗〈h〉 B, where

A = A/D and B = B/D. Since D ⊂ H , y 6∈ HxH = 〈h〉x〈h〉 in G. By

Lemma 3.6, A,B are 〈hn〉-double coset separable for each n > 0. To show that

A is 〈h〉-self-conjugate, suppose h
i ∼A h

j
. Then hi ∼A hjd for some d ∈ D.

Let |d| = α. Then hiα ∼A hjαdα = hjα. Since A is 〈h〉-self-conjugate, we have

iα = jα, that is, i = j. Hence A is 〈h〉-self-conjugate. Similarly, B is also
〈h〉-self-conjugate. By Theorem 3.5, G = A ∗〈h〉 B is 〈h〉x〈h〉-separable for all

x ∈ G. There exists P�fG such that y 6∈ P 〈h〉x〈h〉 = PHxH . Let P be the

preimage of P . Then P�fG and y 6∈ PHxH . Hence G is HxH-separable for
all x ∈ G, that is, G is H-double coset separable. �

4. Criterion

Theorem 4.1. Let G = A ∗H B with H = 〈h〉 × D, where |h| = ∞ and D
is a finite normal subgroup of both A and B. Suppose there exists an integer

δ1 > 0 such that for each n > 0, there exists M�fA such that D ⊂ M ,

M ∩ 〈h〉 = 〈hnδ1〉. Similarly, suppose there exists an integer δ2 > 0 such that

for each n > 0, there exists N�fB such that D ⊂ N , N ∩ 〈h〉 = 〈hnδ2〉. If

A,B and G̃ = G/D are residually finite, then G is residually finite.

Proof. Let 1 6= x ∈ G. We shall find P�fG such that x 6∈ P .

(1) Let x 6∈ D. Then 1 6= x̃ ∈ G̃ = G/D. Since G̃ is residually finite, there

exists P̃�fG̃ such that x̃ 6∈ P̃ . Let P be the preimage of P̃ . Then P�fG and
x 6∈ P .

(2) Let x ∈ D. Since A,B are residually finite, there exist M1�fA and
N1�fB such that M1 ∩ D = 1 = N1 ∩ D. Let M1 ∩ 〈h〉 = 〈hs1〉 and N1 ∩
〈h〉 = 〈hs2〉 for some s1, s2. By assumption, there exists M2�fA such that
M2 ∩ 〈h〉 = 〈hs1s2δ1δ2〉. Similarly, there exists N2�fB such that N2 ∩ 〈h〉 =
〈hs1s2δ1δ2〉. Let M = M1 ∩M2 and N = N1 ∩N2. Clearly, M�fA, N�fB and

M ∩ H = 〈hs1s2δ1δ2〉 = N ∩H . Let G = A/M ∗H B/N , where H = 〈h〉 ×D.

Then G is residually finite. Since 1 6= x ∈ D, there exists P�fG such that

x 6∈ P . Let P be the preimage of P . Then P�fG and x 6∈ P . �

In the above result, we note that the same conclusion can be drawn by
assuming that A,B are H-separable instead of the residual finiteness of G̃ =
G/D.

Lemma 4.2. Let A be a group and D be a finite subgroup of Z(A). Suppose

A is 〈h〉-self-conjugate. Let a ∈ A and a−1h−iahi 6∈ D for all i 6= 0. Then for



CONJUGACY SEPARABILITY 821

each positive integer m, h−i1ahj1d 6∈ 〈hm〉a〈hm〉 for all 0 ≤ i1, j1 < m and for

all d ∈ D except i1 = j1 = 0 and d = 1.

Proof. Let 0 ≤ i1, j1 < m and d ∈ D such that h−i1ahj1d = hk1mahk2m for
some k1, k2. Then a−1hi1+k1ma = hj1−k2md. Let |d| = α. Then

a−1h(i1+k1m)αa = h(j1−k2m)αdα = h(j1−k2m)α.

Since A is 〈h〉-self-conjugate, (i1 + k1m)α = (j1 − k2m)α, and hence i1 +
k1m = j1 − k2m. Thus a−1hi1+k1ma = hj1−k2md = hi1+k1md. By assumption,
i1 + k1m = 0. This implies that i1 = j1 = 0 and d = 1. �

Lemma 4.3. Let G = A ∗H B with H = 〈h〉 × D, where |h| = ∞ and D ⊂
Z(A) ∩ Z(B) is finite. Let A,B be 〈h〉-self-conjugate and 〈hn〉-double coset

separable for each n > 0 and let A,B satisfy (C) above. Let x = a1b1 · · ·anbn,
where ai ∈ A\H, bi ∈ B\H. If x 6∼H xu, where u ∈ D, then there exist M�fA

and N�fB such that M ∩H = N ∩H and in G = A/M ∗H B/N , ‖x‖ = ‖x‖
and x 6∼H xu.

Proof. Case 1. Suppose there is a positive integer s such that x−1h−sxhs ∈ D.
We can assume that s is the least among such integers and x−1h−sxhs = c ∈ D.
Then h−ksxhks = xck for integer k. Since x 6∼H xu, we have u 6∈ 〈c〉. By the
minimality of s, we have x−1h−i1xhi1 6∈ D for all 1 ≤ i1 ≤ s − 1. Note
that G is residually finite (Theorem 4.1). Hence there exists P�fG such that
x−1h−i1xhi1 6∈ PD for all 1 ≤ i1 ≤ s − 1 and u 6∈ P 〈c〉 (D is finite, so 〈c〉
is finite). Let M = P ∩ A and N = P ∩ B. Then M ∩ H = N ∩ H . In
G = A/M ∗H B/N , we shall prove that x 6∼H xu.

Suppose x ∼H xu. Then xu = h
−i
xh

i
for some i. Let i = ks + i1, where

0 ≤ i1 < s. Then xu = h
−i
xh

i
= h

−i1
h
−ks

xh
ks
h
i1

= h
−i1

xckh
i1
. Hence

x−1h
−i1

xh
i1

= uc−k ∈ D. By the choice of P , i1 = 0. Then u = ck ∈ 〈c〉, a
contradiction. Therefore, we have x 6∼H xu.

Case 2. Suppose there is no positive integer s such that x−1h−sxhs ∈ D.
In this case, there exists either ar such that a−1

r h−iarh
i 6∈ D for all i 6= 0

or br such that b−1
r h−ibrh

i 6∈ D for all i 6= 0. Note that x ∼H xu if and
only if x∗ ∼H x∗u for any cyclic permutation x∗ of x. Hence, without loss of
generality, we may assume a−1

1 h−ia1h
i 6∈ D for all i 6= 0.

Suppose a−1
ℓ h−saℓh

s ∈ D for some integer s 6= 0, say h−saℓh
s = aℓwℓ for

some wℓ ∈ D. Since D is finite, h−skaℓh
sk = aℓw

k
ℓ = aℓ for some k. Thus if

a−1
ℓ h−saℓh

s ∈ D for some s 6= 0, then there exists smallest positive integer sℓ
such that h−sℓaℓh

sℓ = aℓ. Similarly, if b−1
ℓ h−sbℓh

s ∈ D for some integer s 6= 0,
then there exists smallest positive integer tℓ such that h−tℓbℓh

tℓ = bℓ. Let

I = {ℓ | aℓ = h−sℓaℓh
sℓ for some minimal sℓ > 0} and(4.1)

J = {ℓ | bℓ = h−tℓbℓh
tℓ for some minimal tℓ > 0}.(4.2)
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Of course, I, J can be empty. But 1 6∈ I by the assumption in the beginning
of Case 2. Let s =

∏
i∈I si and t =

∏
i∈J ti, where s = 1 if I = ∅ and t = 1 if

J = ∅. Let m = st.
Since A is 〈h〉-separable and D is finite, A is H-separable. Similarly, B is

H-separable. There exists M1�fA such that M1∩D = 1 and aλ 6∈ M1H for all
1 ≤ λ ≤ n. Thus u 6∈ M1. Similarly, there exists N1�fB such that N1 ∩D = 1
and bλ 6∈ N1H for all 1 ≤ λ ≤ n.

For those ar where r 6∈ I, a−1
r h−iarh

i 6∈ D for all i 6= 0. Thus by Lemma 4.2,
h−i1arh

j1d 6∈ 〈hm〉ar〈hm〉 for all 0 ≤ i1, j1 < m and for all d ∈ D except
i1 = j1 = 0 and d = 1. Since A is 〈hm〉-double coset separable, there exists
M2�fA such that for all possible r 6∈ I, h−i1arh

j1d 6∈ M2〈hm〉ar〈hm〉 for all
0 ≤ i1, j1 < m and for all d ∈ D except i1 = j1 = 0 and d = 1. Note that
D ∩M2 = 1. Then in Ã = A/M2, if ãr = h̃iãrh̃

j d̃ for d ∈ D, then m | i, j and
d = 1. For those br where r 6∈ J , we have h−ib−1

r hibr 6∈ D for all i 6= 0. Then,

as before, there exists N2�fB such that for all possible r 6∈ J , if b̃r = h̃ib̃rh̃
j d̃

where B̃ = B/N2 and d ∈ D, then m | i, j and d = 1.
Let M1 ∩M2 ∩ 〈h〉 = 〈hs1〉 and N1 ∩N2 ∩ 〈h〉 = 〈hs2〉. By (C), there exist

M3�fA and N3�fB such that M3 ∩ H = 〈hs1s2δ1δ2〉 × D = N3 ∩ H . Let

M = M1 ∩M2 ∩ M3 and N = N1 ∩ N2 ∩ N3. In G = A/M ∗H B/N , where

H = 〈h〉 ×D, we shall prove that x 6∼H xu.
Suppose x ∼H xu. There exist αi, µi and ci, di ∈ D such that

a1 = h
−α1

d
−1

1 a1h
µ1

c1

b1 = h
−µ1

c−1
1 b1h

α2

d2

a2 = h
−α2

d
−1

2 a2h
µ2

c2(4.3)

...

bnu = h
−µn

c−1
n bnh

α1

d1.

From the first equation in (4.3), we have a1 = h
−α1

a1h
µ1

d
−1

1 c1. Since 1 6∈ I,
by the choice of M2 we have m | −α1, µ1 and d−1

1 c1 = 1. If 1 6∈ J again, we can

easily see that c−1
1 d2 = 1. So suppose 1 ∈ J , that is, there exists a minimal pos-

itive integer t1 such that b1 = h−t1b1h
t1 . Thus h−t1kb1h

t1k = b1 for all integer

k. From the second equation of (4.3), we have b1 = h
−µ1

b1h
µ1

h
−µ1+α2

a−1
1 d2.

Since m | µ1, let µ1 = mc = (
∏

i∈I si)(
∏

i∈J ti)c. Then b1 = b1h
−µ1+α2

a−1
1 d2.

Hence h
−µ1+α2

a−1
1 d2 = 1. Since 〈h〉∩D = 1, we have h

µ1

= h
α2

and a−1
1 d2 = 1.

By a similar way, we can see that all d
−1

i ci = 1 and c−1
i di+1 = 1. From the

last equation in (4.3), we have bn = h
−µn

bnh
α1

c−1
n d1u

−1. As before, we can
prove that c−1

n d1u
−1 = 1. Then

u−1 = d
−1

1 c1 · c−1
1 d2 · · · d

−1

i ci · c−1
i di+1 · · · c−1

n d1u
−1 = 1,
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a contradiction by the choice of M1. This proves that x 6∼H xu. �

Definition 4.4. Let G be a group and let H be a subgroup of G. We say G is

H-conjugacy separable if for each x ∈ G such that {x}G ∩H = ∅, there exists

N�fG such that in G = G/N , {x}G ∩H = ∅.
Dyer [4] noted the importance of the above notion in the study of conjugacy

separability of generalized free products, that is, if G has a subgroup H and is
not H-conjugacy separable, then G ∗H G is not conjugacy separable.

Now we are ready to prove our main result.

Theorem 4.5. Let G = A ∗H B with H = 〈h〉 × D, where |h| = ∞ and

D ⊂ Z(A) ∩ Z(B) is finite, such that G̃ = G/D is conjugacy separable. Let

A,B be conjugacy separable, 〈h〉-self-conjugate, and 〈hn〉-double coset separable

for each n > 0 and H-conjugacy separable. If A,B satisfy (C), then G is

conjugacy separable.

Proof. Let x, y ∈ G be elements of minimal lengths in their conjugate classes
and x 6∼G y. Since G̃ = G/D = Ã ∗〈h̃〉 B̃ is conjugacy separable, if x̃ 6∼G̃ ỹ,

then we can find P̃�fG̃ such that P̃ x̃ 6∼G̃/P̃ P̃ ỹ. Let P be the preimage of P̃ .

Then P�fG and Px 6∼G/P Py. Hence we assume that x̃ ∼G̃ ỹ. Then y ∼G xu
for some u ∈ D. Hence we can take y = xu and x 6∼G xu. We shall find M�fA

and N�fB such that in G = A/M ∗H B/N , x 6∼G xu. Since G is conjugacy

separable, there exists P�fG such that Px 6∼G/P Pxu. Let P be the preimage

of P . Then P�fG and Px 6∼G/P Py. Hence G is conjugacy separable.
Case 1. x ∈ H . Without loss of generality, we assume x = hα. Then

hα 6∼A hαu and hα 6∼B hαu. Since A is conjugacy separable and D is finite,
there exists M1�fA such that M1 ∩D = 1 and M1h

α 6∼ M1h
αd for all d ∈ D

such that hα 6∼A hαd. Similarly, there exists N1�fB such that N1∩D = 1 and
N1h

α 6∼ N1h
αd for all d ∈ D such that hα 6∼B hαd. Let M1 ∩ 〈h〉 = 〈hs1〉 and

N1 ∩ 〈h〉 = 〈hs2〉 for some integers s1, s2. By (C), for n = s1s2δ2, there exists
M2�fA such that D ⊂ M2, M2 ∩ 〈h〉 = 〈hs1s2δ1δ2〉 and if M2h

i ∼A/M2
M2h

j ,

then M2h
i = M2h

j . Similarly, for n = s1s2δ1, there exists N2�fB such that
D ⊂ N2, N2 ∩ 〈h〉 = 〈hs1s2δ1δ2〉 and if N2h

i ∼B/N2
N2h

j , then N2h
i = N2h

j .

Let M = M1 ∩M2 and N = N1 ∩N2. Clearly, M ∩H = 〈hs1s2δ1δ2〉 = N ∩H .

In G = A/M ∗H B/N , where H = 〈h〉 ×D, we show that h
α 6∼G h

α
u.

Suppose h
α ∼G h

α
u. Then by Theorem 2.2, there exist integers ci and

di ∈ D such that

(4.4) h
α ∼A h

c1
d1 ∼B h

c2
d2 ∼A · · · ∼B(A) h

cn
dn ∼A(B) h

α
u.

From the first conjugate relation h
α ∼A h

c1
d1, we haveM2h

α ∼ M2h
c1 . Hence,

by the choice ofM2, we haveM2h
α = M2h

c1 . Thus hα−c1 ∈ M2∩〈h〉 = M∩〈h〉,
whence h

α
= h

c1
. It follows that h

α ∼A h
α
d1. Hence M1h

α ∼ M1h
αd1. By

the choice of M1, we have hα ∼A hαd1. From the second conjugate relation
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of (4.4), we have h
α

= h
c1 ∼B h

c2
d2d

−1

1 . Then, as before, h
α

= h
c2

and

hα ∼B hαd2d
−1
1 . Hence hαd1 ∼B hαd2. Similarly, from (4.4), we have h

α
= h

cn

and hαdn ∼A(B) h
αu. Thus we have

hα ∼A hαd1 ∼B · · · ∼B(A) h
αdn ∼A(B) h

αu.

It follows that hα ∼G hαu, a contradiction. Therefore, h
α 6∼G h

α
u.

Case 2. x ∈ A\H (or x ∈ B\H). Let x ∈ A and x have the minimal length 1
in its conjugacy class in G. Let x 6∼G xu, where u ∈ D. Since x has the minimal
length 1 in its conjugacy class, x 6∼A hid for all i and d ∈ D. Hence, by H-
conjugacy separability, there existsM1�fA such thatM1x 6∼A/M1

M1h
id for all

i and all d ∈ D. Since A is conjugacy separable, there exists M2�fA such that
M2∩D = 1 and M2x 6∼A/M2

M2xd for all d ∈ D such that x 6∼A xd. Similarly,
since B is conjugacy separable, there exists N1�fB such that N2 ∩D = 1. Let
M1∩M2∩〈h〉 = 〈hs1〉 and N1∩〈h〉 = 〈hs2〉 for some s1, s2. By (C), there exist
M3�fA and N2�fB such that D ⊂ M3, D ⊂ N2 and M3 ∩〈h〉 = 〈hs1s2δ1δ2〉 =
N2 ∩ 〈h〉.

LetM = M1∩M2∩M3 andN = N1∩N2. ThenM∩H = 〈hs1s2δ1δ2〉 = N∩H .

In G = A/M ∗H B/N , where H = 〈h〉 ×D, we shall prove that x 6∼G xu.
Suppose x ∼G xu. By the choice of M1, x is not conjugate to any element in

H . Hence x has the minimal length 1 in its conjugacy class in G. It follows from
Theorem 2.2 that x ∼A xu. Then by choice of M2, x ∼A xu, a contradiction.
Therefore, x 6∼G xu.

Case 3. x = a1b1 · · · anbn (or x = b1a1 · · · bnan), where ai ∈ A\H and
bi ∈ B\H . Let x 6∼G xu, where u ∈ D. Let xi = aibi · · ·anbna1b1 · · · ai−1bi−1

for 1 ≤ i ≤ n. Clearly, x = x1. By Theorem 2.2, xi 6∼H xu for all 1 ≤ i ≤
n. We shall find Mi�fA and Ni�fB such that Mi ∩ H = Ni ∩ H and in

G = A/Mi ∗H B/Ni, ‖xi‖ = 2n = ‖x‖ and xi 6∼H xu for each 1 ≤ i ≤ n.
The case of i = 1 is done by Lemma 4.3. Thus let M1�fA and N1�fB such

that M1 ∩ H = N1 ∩ H and in G = A/M1 ∗H B/N1, ‖x1‖ = 2n = ‖x‖ and
x1 6∼H xu. We shall consider the case when i > 1.

Suppose xi 6∈ HxuH . Then xi 6∈ HxH . By Corollary 3.8, there exists
Q�fG such that xi 6∈ QHxH , ai 6∈ QH and bi 6∈ QH for all 1 ≤ i ≤ n. Let

Mi = Q ∩ A and Ni = Q ∩ B. Then in G = A/Mi ∗H B/Ni, ‖xi‖ = 2n = ‖x‖
and xi 6∈ HxH = HxuH . Hence xi 6∼H xu as required.

Suppose xi ∈ HxuH , say xi = h1xh2 for h1, h2 ∈ H . Clearly, xi ∼H xh2h1.
Hence xh2h1 6∼H xu. Let h2h1 = hsu1, where u1 ∈ D.

(a) s = 0. Then we have xu1 6∼H xu, or equivalently, x 6∼H xuu−1
1 , where

uu−1
1 ∈ D. By Lemma 4.3, there exist Mi�fA and Ni�fB such that Mi∩H =

Ni ∩H and in G = A/Mi ∗H B/Ni, ‖x‖ = 2n = ‖x‖ and x 6∼H xuu−1
1 . Then

xi ∼H xu1 6∼H xu, as required.
(b) s 6= 0. By Theorem 4.1 and Corollary 3.8, there exists Q�fG such that

hs 6∈ Q, ai 6∈ QH and bi 6∈ QH for all 1 ≤ i ≤ n. Let P ∩ 〈h〉 = 〈hs1〉. By (C),
there exists M�fA such that D ⊂ M , M ∩ 〈h〉 = 〈hss1δ1δ2〉 and if Mhi ∼A/M
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Mhj, then Mhi = Mhj . Similarly, there exists N�fB such that D ⊂ N ,
N∩〈h〉 = 〈hss1δ1δ2〉 and if Nhi ∼B/N Nhj, then Nhi = Nhj. Let Mi = Q∩M ,

Ni = Q∩N and G = A/Mi ∗H B/Ni. Clearly, Mi∩〈h〉 = 〈hss1δ1δ2〉 = Ni∩〈h〉
and ‖xi‖ = 2n = ‖x‖. We shall show that xi 6∼H xu. Suppose xi ∼H xu. Then

xh
s
u1 ∼H xu. Hence there exist αi, µi and di, ci ∈ D such that

a1 = h
−α1

d
−1

1 a1h
µ1

c1

b1 = h
−µ1

c−1
1 b1h

α2

d2

a2 = h
−α2

d
−1

2 a2h
µ2

c2(4.5)

...

bnh
s
u1 = h

−µn

c−1
n bnuh

α1

d1.

From the first equation in (4.5), we haveMa1 = Mh−α1a1h
µ1 , that is, Mhα1 ∼

Mhµ1 . By the choice of M , we have Mhα1 = Mhµ1 . Thus hµ−α1 ∈ M ∩ 〈h〉 ⊂
P . Therefore, h

α1

= h
µ1

. Similarly, from the second equation of (4.3), we have

h
µ1

= h
α2

. Moreover, we have h
α2

= h
µ2

, h
µ2

= h
α3

, . . . , h
αn

= h
µn

, and

h
µn

= h
α1−s

. Therefore, h
α1

= h
α1−s

, which implies h
s
= 1, a contradiction.

Hence xi 6∼H xu as required. �

5. Generalized free products of nilpotent groups

In this section we apply the main result to finitely generated nilpotent
groups.

Lemma 5.1. Let A be finitely generated nilpotent and h ∈ A with |h| = ∞.

Then there exists a positive integer δ such that for each n > 0, there exists

M�fA such that M ∩ 〈h〉 = 〈hnδ〉 and if Mhi ∼A/M Mhj, then Mhi = Mhj.

Proof. Since A is finitely generated nilpotent, there exists an integer i ≥ 0 such
that Zi(A)∩〈h〉 = 1 and Zi+1(A)∩〈h〉 = 〈hδ〉 for some δ > 0. In Â = A/Zi(A),

|ĥ| = ∞ and ĥδ ∈ Z(Â). For a given integer n > 0, consider A = Â/〈ĥnδ〉.
Clearly, |h| = nδ. If h

i ∼A h
j
, then ĥj = ĝ−1ĥiĝĥknδ = ĝ−1ĥi+knδ ĝ for some

g ∈ A and for some integer k. Since Â is finitely generated nilpotent and

|ĥ| = ∞, we have j = i + knδ. Thus h
i
= h

j
. This shows that if h

i ∼A h
j
,

then h
i
= h

j
. Since A is finitely generated nilpotent, A is conjugacy separable.

There exists M�fA such that Mh
i 6∼A/M Mh

j
for all h

i 6∼A h
j
(there are

only finitely many). Considering j = 0, we have 1 6= h
i 6∈ M . Let M be the

preimage of M . Then M�fA, M ∩ 〈h〉 = 〈hnδ〉, and if Mhi ∼A/M Mhj , then

Mhi = Mhj. �
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The above result proves that finitely nilpotent groups satisfy (C′) in The-
orem 3.5. The next shows that those nilpotent groups satisfy (C) in Defini-
tion 3.7.

Lemma 5.2. Let A be finitely generated nilpotent and D ⊂ Z(A). Let h ∈ A
with |h| = ∞ and D ∩ 〈h〉 = 1. Then there exists a positive integer δ such that

for each n > 0, there exists M�fA such that D ⊂ M , M ∩ 〈h〉 = 〈hnδ〉, and if

Mhi ∼A/M Mhj, then Mhi = Mhj.

Proof. Since A = A/D is finitely generated nilpotent and |h| = ∞, by Lemma
5.1, there exists a positive integer δ such that for each n > 0, there exists

M�fA such that M ∩ 〈h〉 = 〈hnδ〉 and if Mh
i ∼A/M Mh

j
, then Mh

i
= Mh

j
.

Let M be the preimage of M . Then M�fA, D ⊂ M , M ∩ 〈h〉 = 〈hnδ〉, and if
Mhi ∼A/M Mhj, then Mhi = Mhj. �

Theorem 5.3. Let G = A ∗H B with H = 〈h〉 × D, where |h| = ∞ and

D ⊂ Z(A) ∩ Z(B) is finite. If A,B are finitely generated nilpotent, then G is

conjugacy separable.

Proof. Finitely generated nilpotent groups are conjugacy separable [6, 15] and

cyclic conjugacy separable [4]. Hence A,B are conjugacy separable and Ã =

A/D, B̃ = B/D are 〈h̃〉-conjugacy separable. Thus A,B are H-conjugacy sep-
arable. Moreover, they are double coset separable [9], and hence A,B are 〈hn〉-
double coset separable for each n > 0. Since G/D is a generalized free product
of finitely generated nilpotent groups amalgamating a cyclic subgroup, G/D
is conjugacy separable [4]. By Lemma 5.2, (C) holds for A,B. Since finitely
generated nilpotent groups are 〈h〉-self-conjugate, G is conjugacy separable by
Theorem 4.5. �

Theorem 5.4. Let G = A ∗H B with H = 〈h〉 ×D, where D ⊂ Z(A) ∩ Z(B).
If A,B are finitely generated nilpotent, then G is conjugacy separable.

Proof. Let x, y ∈ G be elements of minimal lengths in their conjugate classes
and x 6∼G y. Since G̃ = G/D = Ã ∗〈h̃〉 B̃ is conjugacy separable by [4], if

x̃ 6∼G̃ ỹ, then we can find P̃�fG̃ such that P̃ x̃ 6∼G̃/P̃ P̃ ỹ. Let P be the preimage

of P̃ . Then P�fG and Px 6∼G/P Py. Hence we assume that x̃ ∼G̃ ỹ. Then
y ∼G xu for some u ∈ D. Hence we can take y = xu and x 6∼G xu, where
u ∈ D. Let D1 = {c ∈ D | x ∼G xc}. Then D1 is a subgroup of D. Clearly,
u 6∈ D1. Since D is finitely generated abelian, there exists D2�fD such that

u 6∈ D2D1. Let G = G/D2. Then G = A ∗H B, where H = 〈h〉 × D. It is

easy to see that x 6∼G xu. Clearly, |h| = |h|. Since D is finite, if 〈h〉 is finite,

then H is finite and G is conjugacy separable by [4]. On the other hand, if 〈h〉
is infinite, then G is conjugacy separable by Theorem 5.3. Thus there exists
P�fG such that Px 6∼G/P Pxu. Let P be the preimage of P . Then P�fG

and Px 6∼G/P Py. Hence G is conjugacy separable. �
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Note that free groups satisfy most of the conditions in Theorem 4.5 except
that they only have trivial centers. Thus we can apply Theorem 4.5 to show
conjugacy separability of the following example:

Example 5.5. Let G = G1 ∗H G2, where Gi = Fi × Si (i = 1, 2), with Fi free
and Si finitely generated nilpotent groups andH = 〈h〉×D, where 〈h〉 = F1∩F2

and D ⊂ Z(S1) ∩ Z(S2). Then G is conjugacy separable.

Proof. It is well-known that free groups Fi are conjugacy separable, 〈h〉-self-
conjugate, and 〈hn〉-double coset separable for each n > 0. Hence Gi = Fi×Si

are also conjugacy separable, 〈h〉-self-conjugate, and 〈hn〉-double coset sepa-
rable for each n > 0. It is also well-known that free groups Fi satisfy (C′)
in Theorem 3.5. Hence Gi satisfy (C). Note that Gi/D ∼= Fi × Si, where
Si = Si/D is finitely generated nilpotent. Every finitely generated nilpotent
group is a finite extension of a finitely generated torsion-free nilpotent group.
Hence each Si is a finite extension of a finitely generated torsion-free nilpo-
tent group T i. Then Gi/D is isomorphic to a finite extension of Fi × T i. We
note that the group Fi×T i is a residually finitely generated torsion-free nilpo-
tent group. Hence G/D = G1/D ∗〈h〉 G2/D is conjugacy separable [7]. Since

free groups are cyclic conjugacy separable, Gi/D ∼= Fi × Si are 〈h〉-conjugacy
separable. Hence each Gi is H-conjugacy separable. By Theorem 4.5, G is
conjugacy separable when D is finite. Then as in the proof of Theorem 5.4, we
can show that G is conjugacy separable when D is infinite. �
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