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CONJUGACY SEPARABILITY OF GENERALIZED

FREE PRODUCTS OF FINITELY

GENERATED NILPOTENT GROUPS

Wei Zhou, Goansu Kim, Wujie Shi, and C. Y. Tang

Abstract. In this paper, we prove a criterion of conjugacy separability
of generalized free products of polycyclic-by-finite groups with a non-
cyclic amalgamated subgroup. Applying this criterion, we prove that

certain generalized free products of polycyclic-by-finite groups are conju-
gacy separable.

1. Introduction

Let S be a subset of a group G. Then G is said to be S-separable if, for
each x ∈ G\S, there exists a normal subgroup Nx of finite index in G such that
x ̸∈ NxS. If S = {1}, then G is residually finite. If for each x ∈ G, G is {x}G-
separable, where {x}G is the conjugacy class of x in G, then G is said to be
conjugacy separable. Residual and separability properties are of interest to both
group theorists and topologists. They are related to the solvability of the word
problem, conjugacy problem (Mal’cev [10], Mostowski [12]). Topologically they
are related to problems on the embeddability of equivariant subspaces in their
regular covering spaces (Scott [15], Niblo [13]).

Known classes of conjugacy separable groups are not too many. In [4], Black-
burn proved that finitely generated nilpotent groups are conjugacy separable.
Formanek [7] showed that polycyclic groups are conjugacy separable. Fine and
Rosenberger [6] showed that Fuchsian groups are conjugacy separable.
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In this paper we use generalized free products to get more classes of conju-
gacy separable groups. Most papers constructed by this way use cyclic amal-
gamated subgroups (see [14], [5]). Baumslag [2] constructed a generalized free
product of two finitely generated nilpotent groups, amalgamating a subgroup
isomorphic to Z × Z, which is not residually finite. However generalized free
products of polycyclic-by-finite groups, amalgamating central subgroups, are
conjugacy separable [8]. Recently, Allenby, Kim, and Tang [1] considered the
case when the amalgamated subgroup is a direct product of two cyclic groups
and showed that most of Seifert groups are conjugacy separable.

In this paper, we consider the conjugacy separability of generalized free prod-
ucts of polycyclic-by-finite groups amalgamating a finite extension of central
subgroup. In particular we prove the following criterion:

Corollary 2.8. Let G = A ∗H B, where A,B are polycyclic-by-finite groups.
Let C ⊂ Z(G) with |H : C| < ∞. Then G is conjugacy separable if and only
if,

(C1) For u ∈ H\C and c ∈ C, if uc ̸∼G u, there exist M �f A and N �f B

such that M ∩H = N ∩H and, in Ĝ = Â∗Ĥ B̂, ûĉ ̸∼Ĝ û, where Â = A/M, B̂ =

B/N , Ĥ = HM/M = HN/N .

Using this criterion, we shall prove that certain generalized free products are
conjugacy separable in Section 3.

2. A criterion

Throughout this paper we use standard terms and notations.
The letter G always denotes a group.
If x ∈ G, {x}G denotes the set of all conjugates of x in G.
x ∼G y means x, y are conjugate in G.
x ̸∼G y means x, y are not conjugate in G.
Z(G) means the center of G and Z2(G) satisfies Z2(G)/Z(G) = Z(G/Z(G)).
N �f G means N is a normal subgroup of G with finite index.
If G = A ∗H B then ||x|| denotes the free product length of x in G.
The following results are important for the study of the conjugacy separa-

bility of generalized free product, which will be used extensively in this paper:

Theorem 2.1 ([9, Theorem 4.6]). Let G = A∗HB and let x ∈ G be of minimal
length in its conjugacy class. Suppose that y ∈ G is cyclic reduced, and that
x ∼G y.

(1) If ||x|| = 0, then ||y|| ≤ 1 and, if y ∈ A, then there exists a sequence
h1, h2, . . . , hr of elements in H such that y ∼A h1 ∼B h2 ∼A · · · ∼A(B) hr = x.

(2) If ||x|| = 1, then ||y|| = 1 and, either x, y ∈ A and x ∼A y, or x, y ∈ B
and x ∼B y.

(3) If ||x|| ≥ 2, then ||x|| = ||y|| and y ∼H x∗ where x∗ is a cyclic permuta-
tion of x.
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Theorem 2.2 ([5, Theorem 4]). If A and B are conjugacy separable and H is
finite, then G = A ∗H B is conjugacy separable.

By this theorem, we can easily see that the generalized free product of
finite groups is conjugacy separable, which will be used later. In order to
study the conjugacy separability of generalized free product with a non-cyclic
amalgamated subgroup, we need the followings.

Definition 2.3. A group G is H-conjugacy separable if, for each x ∈ G such
that {x}G ∩H = ∅, there exists a normal subgroup N of finite index in G such

that {x}G ∩H = ∅ where G = G/N .

Lemma 2.4. Let A be a polycyclic-by-finite group and C �A. If C ≤ H ≤ A
and |H/C| is finite, then A is H-conjugacy separable.

Proof. Let a ∈ A and {a}A ∩ H = ∅. Let A = A/C. Then {a}A ∩ H = ∅.
Since A is also a polycyclic-by-finite group, A is conjugacy separable. As H is
finite, there exists N �f A such that Na ̸∼A/N Nh for all h ∈ H. Let N be

the preimage of N in A. Then we have {Na}A/N ∩NH/N = ∅. □

A group G is central subgroup separable if G is H-separable for any finitely
generated subgroup H in Z(G). Here we note that Z(A∗HB) = Z(A)∩Z(B) ⊂
A ∩B = H.

Lemma 2.5. Let G = A∗HB where A,B are central subgroup separable groups.
Let C ⊂ Z(G) such that |H : C| < ∞. Then, for each M1 �f A and N1 �f B,
there exist M �f A and N �f B such that M ∩H = N ∩H with M ⊆ M1 and
N ⊆ N1.

Proof. For every S <f C, we consider G = G/S = A/S ∗H/S B/S. Since A,B
are central subgroup separable, A/S and B/S are residually finite. Since H/S
is finite, G is residually finite [3]. Let C1 = M1∩N1∩C. Then C1 <f C. Hence

H/C1 is finite and G = G/C1 is residually finite. Thus there exists L �f G

such that L ∩H = 1. Let L be the preimage of L in G. Let M = M1 ∩ L and
N = N1∩L. Since L∩H = C1, we have M∩H = (M1∩L)∩H = M1∩C1 = C1

and, similarly, N ∩H = C1. □

Lemma 2.6. Let G = A ∗H B, where A,B are central subgroup separable
groups. Let C ⊂ Z(G) with |H : C| < ∞. Then G is residually finite and
H-separable.

Proof. Let 1 ̸= x ∈ G. If x ̸∈ C, then, in G = A/C ∗H/C B/C, x ̸= 1. Since G

is residually finite, there exists L�f G such that x ̸∈ L. Let L be the preimage

of L in G. Then L �f G such that x ̸∈ L. If x ∈ C, there exists S �f C such

that x ̸∈ S. Let G = A/S ∗H/S B/S. Then x ̸= 1. Since G is again residually
finite, as before we can find L �f G such that x ̸∈ L. Hence G is residually
finite.
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To show that G is H-separable, let x ∈ G\H. Clearly x ̸∈ H in G =
A/C ∗H/C B/C, where H = H/C. Since G is residually finite and H is finite,

there exists L �f G such that L ∩ xH = ∅. Let L be the preimage of L in G.
Then x ̸∈ LH. Hence G is H-separable. □
Theorem 2.7. Let G = A ∗H B, where A,B are central subgroup separable
groups. Let C ⊂ Z(G) with |H : C| < ∞. Suppose that A,B are H-conjugacy
separable and A/C,B/C are conjugacy separable. Then G is conjugacy sepa-
rable if and only if,

(C1) For u ∈ H\C and c ∈ C, if uc ̸∼G u, there exist M �f A and N �f B

such that M ∩H = N ∩H and, in Ĝ = Â∗Ĥ B̂, ûĉ ̸∼Ĝ û, where Â = A/M, B̂ =

B/N , Ĥ = HM/M = HN/N .

Proof. Suppose that G is conjugacy separable. Let u ∈ H\C and c ∈ C such
that uc ̸∼G u. Then there exists T �f G such that in G = G/T , uc ̸∼G u. Let
M = T ∩ A and N = T ∩ B. Then M �f A and N �f B. By Theorem 2.2,

Ĝ = A/M ∗Ĥ B/N is conjugacy separable, where Ĥ = HM/M = HN/N .

Since there is a natural homomorphism ϕ : Ĝ → G, we have ûĉ ̸∼Ĝ û.
Conversely, suppose that condition (C1) is satisfied in G.
Let x, y ∈ G such that x ̸∼G y. Without loss of generality we can assume

that x and y are of minimal length in their conjugacy classes in G. Since G is
residually finite (Lemma 2.6), we may assume that x ̸= 1 ̸= y. To prove the
theorem, we shall find M � A and N � B such that M ∩ H = N ∩ H such
that x ̸∼G y, where G = A/M ∗H B/N is conjugacy separable. If this is done,
there exists T �f G such that xT ̸∼G/T yT , which means that G is conjugacy
separable.

Case 1. ||x|| = ||y|| = 0.
Subcase 1. x ∈ C and y ∈ H (or y ∈ C and x ∈ H). Suppose that x ∈ C.

Clearly, x ̸= y. Since G is residually finite by Lemma 2.6, there exists L�f G

such that x−1y ̸∈ L. Let A = A/(A ∩ L) and B = B/(B ∩ L). Consider
G = A ∗H B, where H ∼= HL/L. Obviously x ̸∼G y because x ∈ C ⊂ Z(G)

and x ̸= y by the choice of L. By Theorem 2.2, G is conjugacy separable, as
required.

Subcase 2. x, y ∈ H\C. Now consider G̃ = A/C ∗H/C B/C. By assumption

A/C,B/C are conjugacy separable. Hence G̃ is conjugacy separable. If x̃ ̸∼G̃ ỹ,
then there is nothing to prove. So we suppose that x̃ ∼G̃ ỹ. Then ỹ = g̃−1x̃g̃
for some g ∈ G. Hence y = g−1xgc = g−1xcg for some c ∈ C. Thus, since
x ̸∼G y, x ̸∼G xc. By condition (C1), there exist M �f A and N �f B

such that M ∩ H = N ∩ H and, in G = A/M ∗H B/N , xc ̸∼G x, where

H = HM/M = HN/N . Then G is conjugacy separable, and x ̸∼G y, as
required.

Case 2. ||x|| = 1 and ||y|| = 0 (or ||y|| = 1 and ||x|| = 0).
Without loss of generality, let x ∈ A\H and y ∈ H. Since x is of the

minimal length 1 in its conjugacy class, {x}G ∩H = ∅. Hence {x}A ∩H = ∅.
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By assumption, A is H-conjugacy separable. There exists M1 �f A such that,

in A/M1, {xM1}A/M1 ∩ HM1/M1 = ∅. By Lemma 2.5, there exist M �f A

and N �f B such that M ⊆ M1, N ⊆ B, and M ∩ H = N ∩ H. Let G =

A/M ∗H B/N , where H = HM/M = HN/N . Since A/M,B/N are finite, G is

conjugacy separable. By the choice of M ⊂ M1, we have {x}A ∩H = ∅. Hence
x is of the minimal length 1 in its conjugacy class in G = A/M ∗H B/N . Since

y ∈ H, by Theorem 2.1, x ̸∼G y, as required.
Case 3. ||x|| = ||y|| = 1.
Subcase 1. x, y ∈ A\H (or x, y ∈ B\H). Since x is of minimal length in its

conjugacy class, {x}G ∩H = ∅. Hence {x}A ∩H = ∅. By assumption, A is H-
conjugacy separable. There exists M1 �f A such that, in A/M1, {xM1}A/M1 ∩
HM1/M1 = ∅. Since A is conjugacy separable, there exists M2 �f A such that
xM2 ̸∼A/M2

yM2. By Lemma 2.5, there exist M �f A and N �f B such that

M ⊆ M1 ∩M2, N ⊆ B, and M ∩H = N ∩H. Let G = A/M ∗H B/N , where

H = HM/M = HN/N . Since A/M,B/N are finite, G is conjugacy separable.

By the choice of M,N , we have {x}A∩H = ∅ and x ̸∼A y. Hence, by Theorem
2.1, x ̸∼G y, as required.

Subcase 2. Suppose that x ∈ A\H and y ∈ B\H. As in Subcase 1, there
exist M �f A and N �f B such that M ∩H = N ∩H, {xM}A/M ∩HM/M = ∅
and {yN}B/N ∩ HN/N = ∅. Let G = A/M ∗H B/N , where H = HM/M =
HN/N . Then x and y are of the minimal length 1 in their conjugacy classes,
respectively. Hence, by Theorem 2.1, x ̸∼G y, as required.

Case 4. ||x|| ̸= ||y|| and ||x|| ≥ 2 (or ||y|| ≥ 2). Since x is of minimal length
of its conjugacy class, we can suppose that x = a1b1 · · · ambm, where ai ∈ A\H
and bi ∈ B\H. Without loss of generality, suppose that y = c1d1 · · · cndn where
cj ∈ A\H and dj ∈ B\H. Since G is H-separable by Lemma 2.6, there exists
L�f G such that all ai, cj , bi, dj ̸∈ HL. Let M = A∩L and N = B ∩L. Then

M �f A and N �f B, and G = A/M ∗H B/N is conjugacy separable, where

H = HM/M = HN/N . Moreover we have ||x|| = ||x||, ||y|| = ||y||. Thus x, y
are cyclically reduced and ||x|| ≥ 2. It follows that x is of minimal length in
its conjugacy class. Since ||x|| ̸= ||y||, by Theorem 2.1, x ̸∼G y, as required.

Case 5. ||x|| = ||y|| ≥ 2. As before, suppose that x = a1b1 · · · ambm and y =
c1d1 · · · cmdm, where ai, ci ∈ A\H and bi, di ∈ B\H. Let X = {h−1x∗h| h ∈ H
and x∗ is a cyclic permutation of x}. Since C ⊂ Z(G) ⊂ H, |H : Z(G)| is
finite. It follows that X is finite and y ̸∈ X. Since G is residually finite, there
exists L1 �f G such that yL1 ∩ {zL1| z ∈ X} = ∅. Now G is H-separable by
Lemma 2.6. As before, there exists L2 �f G such that all ai, ci, bi, di ̸∈ HL2.
By Lemma 2.5, there exist M �f A and N �f B such that M ∩H = N ∩H and

M,N ⊆ L1∩L2. Then, inG = A/M∗HB/N , we have ||x|| = ||x|| = ||y|| = ||y||.
Since A/M and B/N are finite, G is conjugacy separable. By the choice of L1,
we have y ̸∼H x∗. Hence, by Theorem 2.1, x ̸∼G y, as required. □
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Note that quotient groups of polycyclic-by-finite groups are polycyclic-by-
finite and polycyclic-by-finite groups are subgroup separable [11] and conjugacy
separable [7]. Hence, by Lemma 2.4, we have the following from Theorem 2.7:

Corollary 2.8. Let G = A ∗H B, where A,B are polycyclic-by-finite groups.
Let C ⊂ Z(G) with |H : C| < ∞. Then G is conjugacy separable if and only
if,

(C1) For u ∈ H\C and c ∈ C, if uc ̸∼G u, there exist M �f A and N �f B

such that M ∩H = N ∩H and, in Ĝ = Â∗Ĥ B̂, ûĉ ̸∼Ĝ û, where Â = A/M, B̂ =

B/N , Ĥ = HM/M = HN/N .

3. Conjugacy separability of certain generalized free products

In this section, we prove certain generalized free products of polycyclic-by-
finite groups are conjugacy separable.

Theorem 3.1. Let A,B be isomorphic polycyclic-by-finite groups under the
isomorphism ϕ and let G = A∗H B, where H = ϕ(H). Suppose that C ⊂ Z(G)
with |H : C| < ∞. Then G is conjugacy separable.

Proof. To use Corollary 2.8, we prove that (C1) holds. Let u ̸∼G uc, where
u ∈ H\C and c ∈ C. Then u ̸∼A uc. Since A is conjugacy separable, there
exists M �f A such that u ̸∼A uc, where A = A/M . Then N = ϕ(M) �f B

and in G = A ∗H B, where B = B/ϕ(M) and H = H/N = ϕ(H)/ϕ(M), we
show that u ̸∼G uc.

If u ∼G uc, then there exist hi ∈ H = ϕ(H) such that

(1) u ∼A h1 ∼B h2 ∼A · · · ∼A hr ∼B uc.

Since hi = ϕ(hi), each of hs ∼B hs+1 implies hs = ϕ−1(hs) ∼ϕ−1(B) ϕ
−1(hs+1)

= hs+1. Hence (1) implies

(2) u ∼A h1 ∼A h2 ∼A h3 ∼A · · · ∼A hr ∼A uc.

Thus u ∼A uc, which contradicts our choice of N . Therefore u ̸∼G uc. It
follows from Corollary 2.8 that G is conjugacy separable. □
Theorem 3.2. Let G = A ∗H B, where A,B are polycyclic-by-finite groups
and H = K × C such that C ⊆ Z(G) and K is finite. Then G is conjugacy
separable.

Proof. Since C is a finitely generated abelian group, C = K1 × C1 where K1

is finite and C1 is torsion-free. Hence we may assume that C is torsion free.
Under this assumption, we show that (C1) holds.

Let x ∈ H\C and c ∈ C such that x ̸∼G xc. Since H = K × C, we
may assume that x ∈ K. Let S <f C such that c ̸∈ S. Let G = G/S =
A/S ∗H/S B/S. We shall show that x ̸∼G xc. Suppose that x ∼G xc. Then,

by Theorem 2.1, there is a sequence h1, . . . , hr of elements in H such that
x ∼A h1 ∼B h2 ∼A · · · ∼A hr ∼B xc. Since x ∼A h1 for some a1 ∈ A,
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we have x = a−1
1 h1a1. Let h1 = k1c1 where k1 ∈ K and c1 ∈ C. Then

x−1a−1
1 k1a1 = c−1

1 . Hence x−1a−1
1 k1a1 ∈ C. Let x−1a−1

1 k1a1 = z ∈ C. Then
a−1
1 k1a1 = xz. Since k1, x ∈ K are of finite orders, let m = lcm{|x|, |k1|}. Then

1 = a−1
1 km1 a1 = xmzm = zm. However C is torsion-free. Hence z = 1. Thus

x−1a−1
1 k1a1 = 1. It follows that c1 = 1 and h1 = k1. Similarly, since h1 ∼B h2,

if h2 = k2c2, c2 ∈ C and k2 ∈ K, then c2 = 1 and h2 = k2. Inductively, we can
see that if hr = krcr, then cr = 1 and hr = kr. Now, since kr = hr ∼B y = xc,
as before, we have c = 1, contradicting the choice of S.

Consequently, x ̸∼G xc. Since H is finite, G is conjugacy separable (The-

orem 2.2). Hence there exists L �f G such that Lx ̸∼G/L Lxc. Let L be the

preimage of L in G. Let M = L∩A and N = L∩B. Then M�f A, N�f B and

M ∩H = N ∩H and, in Ĝ = Â ∗Ĥ B̂, x̂ ̸∼Ĝ x̂ĉ, where Â = A/M, B̂ = B/N ,

Ĥ = HM/M = HN/N .
This proves that (C1) holds. Hence, by Corollary 2.8, G is conjugacy sepa-

rable. □

Theorem 3.3. Let G = A ∗H B, where A,B are polycyclic-by-finite groups.
Let C ⊂ Z(G) with |H : C| < ∞. If H ⊂ Z(A), then G is conjugacy separable.

Proof. To show that (C1) holds, let x ∈ H\C and c ∈ C such that x ̸∼G xc.
Since B is conjugacy separable and x ̸∼B xc, there exists N1 �f B such that

N1x ̸∼B/N1
N1xc. Let N1 ∩ C = S. Then S <f C. Let G = G/S =

A/S ∗H/S B/S. We shall show that x ̸∼G xc. Suppose that x ∼G xc. Then,

by Theorem 2.1, there is a sequence h1, . . . , hr of elements in H such that
x ∼A h1 ∼B h2 ∼A · · · ∼A hr ∼B xc. Since H ⊂ Z(A), if h ∼A k for h, k ∈ H

then h = k. Hence we have x = h1 ∼B h2 = h3 ∼B · · · ∼B hr−1 = hr ∼B xc.
Thus x ∼B xc which contradicts our choice of N1. Therefore, x ̸∼G xc. Then,
as in the proof of previous theorem, we can find M �f A and N �f B such that

M ∩H = N ∩H and, in Ĝ = Â ∗Ĥ B̂, x̂ ̸∼Ĝ x̂ĉ, where Â = A/M, B̂ = B/N ,

Ĥ = HM/M = HN/N .
This proves that (C1) holds. Hence, by Corollary 2.8, G is conjugacy sepa-

rable. □

Theorem 3.4. Suppose that G = A ∗H B, where A,B are finitely generated
nilpotent groups. Suppose that H ⊆ Z2(A), H ⊆ Z2(B) and C = Z(A) ∩H =
Z(B) ∩H = ⟨c⟩ with |H : C| < ∞. Then G is conjugacy separable.

Proof. Suppose that x, y ∈ H. If x ∼A y, then there exists a ∈ A such that
a−1xa = y. Since H ⊂ Z2(A), there exists z ∈ Z(A) such that a−1xa = xz.
Thus we have y−1x = z−1 ∈ H ∩ Z(A) = ⟨c⟩. This means that if the elements
x, y of H are conjugate in A then x, y have to be in the same coset of C in H.
In the same way, in A = A/⟨ck⟩, if x ∼A y, then x, y are in the same coset of

C in H. Similarly, in B = B/⟨ck⟩, if x ∼B y, then x, y are in the same coset of
C in H.
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To prove (C1), suppose that h ∈ H\C and h ̸∼G hcl. Then h ̸∼A hcl and
h ̸∼B hcl.

(1) Suppose that h ̸∼A hci (similarly h ̸∼B hci) for all i ̸= 0. In this case, we
have hci ∼A hcj if and only if i = j. Moreover, for any k > 0, in A = A/⟨ck⟩,
hci ∼A hcj if and only if ci = cj . Since h ̸∼B hcl, there exists N �f B such

that Nh ̸∼B/N Nhcl. Let N ∩ ⟨c⟩ = ⟨ck⟩ for some k > 0. We shall show that,

in G = G/⟨ck⟩, h ̸∼G hcl.

If h ∼G hcl, then, by Theorem 2.1, there exist h1, . . . , hr ∈ H such that

h ∼A h1 ∼B h2 ∼A · · · ∼A hr ∼B hcl.

We have proved that if hi ∼A(B) hi+1, then hi and hi+1 are in same coset

of C in H. Hence h, h1, h2, . . . , hr, hc
l are in the coset hC. Therefore, we

have hi = hcli for some li. Note hci ∼A hcj if and only if ci = cj . Hence, if

hi ∼A hi+1, then hcli ∼A hcli+1 which implies cli = cli+1 . Thus hi = hi+1.

Therefore we have h = h1 ∼B h2 = · · · = hr ∼B hcl. Thus h ∼B hcl which

contradicts our choice of N . Therefore h ̸∼G hcl.

(2) Suppose that there exist positive integers k1, k2 such that h ∼A hck1

and h ∼B hck2 . Since h ̸∼A hcl, we can choose m to be the minimal positive
integer such that h ̸∼A hcm but h ∼A hcm+1. Thus we have

h ̸∼A hc1, h ̸∼A hc2, . . ., h ̸∼A hcm, but h ∼A hcm+1.
This implies that h ∼A hci if and only if ci ∈ ⟨cm+1⟩. Similarly, there exists
the smallest positive integer n such that h ̸∼B hcn and h ∼B hcn+1. This also
implies that h ∼B hci if and only if ci ∈ ⟨cn+1⟩.

Since h ∼A hcm+1 and h ∼B hcn+1, we have

h ∼A hcλ(m+1) ∼B hcλ(m+1)+µ(n+1)

for all integers λ, µ. Let d = gcd{m+1, n+1}. Hence h ∼G hcdk for all integer
k. Thus, since h ̸∼G hcl, we have cl ̸∈ ⟨cd⟩.

Now consider G = G/⟨cd⟩ = A ∗H B, where A = A/⟨cd⟩, B = B/⟨cd⟩, and
H = H/⟨cd⟩. We note that

(3) h ∼A(B) hc
i if and only if ci = 1.

We shall show that, in G, h ̸∼G hcl. Suppose that h ∼G hcl. By Theorem

2.1, there exist h1, . . . , hr ∈ H such that h ∼A h1 ∼B · · · ∼A hr ∼B hcl.

As before, h, h1, h2, . . . , hr, hc
l are in the coset hC. Hence hi = hcli for some

li. Since h ∼A h1 = hcl1 , we have cl1 = 1 by (3) and h1 = h. Since h =

h1 ∼B h2 = hcl2 , we have cl2 = 1 by (3) and h2 = h. Similarly, we have

cl3 = 1 = · · · = clr and h3 = · · · = hr = h. Finally, since h = hr ∼B hcl, we

have cl = 1 by (3), which contradicts the fact that cl ̸∈ ⟨cd⟩. Hence we have
h ̸∼G hcl.

Since H is finite, G is conjugacy separable (Theorem 2.2). Hence there exists
T �f G such that hT ̸∼G/T hclT . Let T be the preimage of T in G and let

M = T ∩A and N = T ∩B. Then M ∩H = N ∩H and, in Ĝ = A/M ∗Ĥ B/M ,
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we have ĥ ̸∼Ĝ ĥĉl. This proves that (C1) holds. Thus, by Corollary 2.8, G is
conjugacy separable. □
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