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WEAK POTENCY AND CYCLIC SUBGROUP

SEPARABILITY OF CERTAIN FREE PRODUCTS

AND TREE PRODUCTS

Muhammad Sufi Mohd Asri, Wan Ainun Mior Othman, Kok Bin Wong,
and Peng Choon Wong

Abstract. In this note, we shall show that the generalized free products

of subgroup separable groups amalgamating a subgroup which itself is

a finite extension of a finitely generated normal subgroup of both the
factor groups are weakly potent and cyclic subgroup separable. Then we

apply our result to generalized free products of finite extensions of finitely

generated torsion-free nilpotent groups. Finally, we shall show that their
tree products are cyclic subgroup separable.

1. Introduction

A group G is called weakly potent if for any element x of infinite order in G,
we can find a positive integer r with the property that for each positive integer
n, there exists a normal subgroup Mn of finite index in G such that xMn

has order exactly rn in the finite group G/Mn. A group G is cyclic subgroup
separable if G is H-separable for every cyclic subgroup H of G.

Weak potency is a strong form of residual finiteness in the sense that a
finitely generated torsion-free weakly potent group is residually finite. A cyclic
subgroup separable group is residually finite. A group is termed Hopfian if it
is not isomorphic to the quotient group by any nontrivial normal subgroup, in
short, it is not isomorphic to any of its proper quotients. We note that Baum-
slag [6] constructed a generalized free product of two finitely generated free
nilpotent groups, amalgamating a subgroup isomorphic to Z×Z, which is non-
Hopfian, whence not residually finite (see [15]). On the positive side, Baumslag
[7] proved that generalized free product of two finitely generated torsion-free
nilpotent groups, amalgamating a cyclic subgroup is residually finite.

The concept of weak potency was introduced by Evans [8] with the name
regular quotient in order to show the residual finiteness and cyclic subgroup
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separability of certain generalised free products. In the same paper he showed
that free groups and finitely generated torsion-free nilpotent groups are weakly
potent. The term weak potency was properly and independently defined by
Tang [17] and he proved that finite extensions of free groups and finitely gen-
erated torsion-free nilpotent groups are weakly potent. Wong and Wong [23]
further improved the result of Tang [17] by showing that every finite extensions
of finitely generated nilpotent groups are weakly potent. Kim and Tang [14]
and Tang [17] used weak potency to determine the conjugacy separability of
certain generalised free products of conjugacy separable groups. Since then,
weak potency has been used in establishing the residual finiteness and conju-
gacy separability in various generalized free products, tree products, polygonal
products and one-relator groups (see [1, 3, 14,17,20,21,23]).

On the other hand, separability properties are interesting in both group
theory and topology (see [9,18]). In [22], Wong and Wong have shown that the
tree products of subgroup separable groups (particularly, the graph products of
polycyclic-by-finite groups) amalgamating finitely generated normal subgroups
are πc. Zhou et al. [26] have shown the conjugacy separability of generalized
free products of polycyclic-by-finite groups amalgamating a finite extension of
central subgroup.

Recently, Zhou and Kim [24] proved that certain generalized free products of
abelian subgroup separable groups, amalgamating an infinite cyclic subgroup,
are abelian subgroup separable. Applying this, it was shown that any tree
product of free groups or finitely generated nilpotent groups, amalgamating
infinite cyclic subgroups, is abelian subgroup separable. They also have prove
that certain HNN extensions is abelian subgroup separable [25]. Their study
of abelian subgroup separability was inspired by [10].

In this paper, we consider the weak potency and cyclic subgroup separabil-
ity of generated free products of subgroup separable groups amalgamating a
subgroup which itself is a finite extension of a finitely generated normal sub-
group of both the factor groups. Then we apply our result to generalized free
products of finite extensions of finitely generated torsion-free nilpotent groups.
We shall show that their tree products are cyclic subgroup separable.

The outline of this paper is as follows: We state the definitions and essen-
tial lemmas in Section 2. In Section 3, we established a stronger criterion for
weak potency of generalized free products. Then, in Section 4, we apply the
new criterion to generalized free products of finite extensions of finitely gen-
erated torsion-free nilpotent groups amalgamating a finitely generated normal
subgroup or amalgamating a finite extension of a finitely generated normal
subgroup which is either torsion-free nilpotent or abelian. Finally, in Section
5, we prove that these types of generalized free products and tree products are
cyclic subgroup separable.
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The notations used in this note are standard. In addition, the following
notations will be used for any group G:

(i) N ≤f G (resp. N◁fG) means N is a subgroup (resp. normal subgroup)
of finite index in G.

(ii) N charf G means N is a characteristic subgroup of finite index in G.
(iii) G = A ∗H B denotes the generalized free product G of A and B amal-

gamating the subgroup H.
(iv) If G is a generalized free product, then ∥g∥ denotes the usual reduced

length of g in G.

2. Preliminaries

We now state some definitions as well as some essential lemmas.

Definition 2.1. Let G be a group and H a subgroup of G.

(i) A group G is called H-separable for the subgroup H if for each x ∈
G\H, there exists N ◁f G such that x /∈ HN (or N ∩ xH = ∅).

(ii) G is termed subgroup separable if G is H-separable for every finitely
generated subgroup H.

(iii) G is termed cyclic subgroup separable (briefly, πc) if G is ⟨x⟩-separable
for each x ∈ G.

(iv) G is termed residually finite if G is {1}-separable.

From the above definition, a subgroup separable group is πc and a πc group
is residually finite. We note that a group G is also called subgroup separable if
every finitely generated subgroup of G is closed in the profinite topology, the
topology whose open basis consists of the cosets of finite index subgroups of G.

Definition 2.2 ([17]). Let G be a group and x be an element of infinite order
in G. Then G is called weakly ⟨x⟩–potent, briefly ⟨x⟩–wpot, if we can find a
positive integer r with the property that for each positive integer n, there exists
Mn ◁f G such that xMn has order exactly rn in the finite group G/Mn; G is
called weakly potent if G is ⟨x⟩–wpot for each element x of infinite order in G.

We note here that the subgroup Mn in Definition 2.2 depends on n. Hence
when there is no confusion, we shall write M instead of Mn.

Free groups, polycyclic groups, finitely generated nilpotent groups and their
finite extensions are known to be weakly potent for elements of infinite order
and subgroup separable (see [8, 17, 21]). On the other hand, there are infinite
groups with elements of finite order that are weakly potent but not residually
finite. For example, we have G = Z(p∞) × ⟨h⟩, where Z(p∞) is the Prüfer
group. Then G is weakly potent for elements of infinite order but G is not
residually finite.

The following lemma can be derived easily from definition of the separability
of a normal subgroup.
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Lemma 2.3. Let G be a group and N ◁G. If G is N–separable, then G/N is
residually finite.

Lemma 2.4. Let G = A ∗H B, where A and B are finite. Then G is weakly
potent and residually finite.

Proof. We note that G is free-by-finite [11]. Hence G is weakly potent by
[17, Lemma 2.2] and G is residually finite by [7, Theorem 2]. □

Lemma 2.5 ([2]). Let G = A∗H B, where A and B are subgroup separable (or
πc or residually finite). If H is finite, then G is subgroup separable (or πc or
residually finite respectively).

Lemma 2.6 ([4]). Let G = A ∗H B, where A and B are weakly potent. If H
is finite, then G is weakly potent.

We now state one criterion for the residual finiteness and another criterion
for cyclic subgroup separability (πc) of generalized free products.

Theorem 2.7 ([19]). Let G = A ∗H B. Suppose that

(a) A and B are residually finite and H-separable;
(b) for each R◁fH, there exist MA◁fA and MB◁fB such that MA∩H =

MB ∩H ⊆ R.

Then G is residually finite.

Theorem 2.8 ([13]). Let G = A ∗H B. Suppose that

(a) A and B are πc and H-separable;
(b) for each R◁f H, there exist NA◁f A and NB◁f B such that NA∩H =

NB ∩H ⊆ R.

Then G is πc.

3. A new criterion for weak potency

In this section, we prove a new criterion for weak potency. In [20], Wong and
Tang proved a criterion for the weak potency of generalized free product. Then,
Asri, Wong and Wong [5] established the following stronger version below and
we shall use it to establish a new criterion in Theorem 3.7.

Theorem 3.1 ([5]). Let G = A ∗H B. Suppose that

(a) A and B are H-separable;
(b) for each R◁fH, there exist MA◁fA and MB◁fB such that MA∩H =

MB ∩H ⊆ R; and
(c) for any x ∈ A (or x ∈ B) of infinite order, we can find a positive

integer r, such that for each positive integer n, there exist NA ◁f A
and NB ◁f B such that NA ∩H = NB ∩H and NA ∩ ⟨x⟩ = ⟨xrn⟩ (or
NB ∩ ⟨x⟩ = ⟨xrn⟩ if x ∈ B).

Then G is weakly potent.
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For ease of exposition, from now on we define condition (c) in Theorem 3.1
as Condition (∗). Thus, if A and B satisfy condition (c) of Theorem 3.1, then
A and B are said to satisfy Condition (∗).

3.1. Lemmas needed

Lemma 3.2. Let A be a group and H be a subgroup of A. Suppose C is a
normal subgroup of A such that C ≤f H. If A is C-separable, then there exists
N ◁f A such that N ∩H = C.

Proof. We form A = A/C. Since A is C-separable, then A is residually finite
(see Lemma 2.3). Since H is finite, there exists N ◁f A such that N ∩H = 1.

Let N be the preimage of N in A. Then N ◁f A and N ∩H = C. □

Next we show how we can construct a characteristic subgroup from a sub-
group of finite index in a finitely generated group.

Let H be a finitely generated group and R ◁f H. If R is a characteristic
subgroup of H, then we set fH(R) = R. Suppose R is not a characteristic
subgroup of H. Let [H : R] = m, where m is a positive integer. Since H is
finitely generated, the number of subgroups of index m in H is finite. Let N
be the intersection of all these subgroups of index m in H. Then N charf H
and N ⊆ R. We set fH(R) = N (see [21, Lemma 3.1]). The above statement
can be summarized as follows:

Lemma 3.3. Let H be a finitely generated group. If R ◁f H, then there
exists fH(R) ⊆ R such that fH(R) charf H and fH(R) is finitely generated.
Furthermore, if R charf H, then fH(R) = R

Lemma 3.4. Let A be a subgroup separable group and H be a subgroup of A.
Suppose C is a finitely generated normal subgroup of A such that C ≤f H.
Then for each S ◁f C, there exists N ◁f A such that N ∩H = fC(S).

Proof. Let S ◁f C be given. Since C is finitely generated, then by Lemma
3.3, there exists fC(S) ⊆ S such that fC(S) charf C and fC(S) is finitely
generated. Hence fC(S) is a finitely generated normal subgroup of A such
that fC(S) ≤f H. Since A is subgroup separable, then A is fC(S)-separable.
Therefore by Lemma 3.2, there exists N ◁f A such that N ∩H = fC(S). □

Lemma 3.5. Let G = A∗HB, where A and B are subgroup separable. Suppose
C is a finitely generated normal subgroup of A and B such that C ≤f H. Then
for each R ◁f H, there exist NA ◁f A and NB ◁f B such that NA ∩ H =
NB ∩H ⊆ R.

Proof. Let R ◁f H be given. If R = C, then R is a finitely generated normal
subgroup of A and B such that R ≤f H. Since A and B are subgroup separable,
A and B are R-separable. Hence by Lemma 3.2, there exist NA ◁f A and
NB ◁f B such that NA ∩H = NB ∩H = R.
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Suppose that R ̸= C. Since R◁f H and C ≤f H, then R∩C◁f C. Then by
Lemma 3.4, there exist NA ◁f A and NB ◁f B such that NA ∩H = NB ∩H =
fC(R ∩ C) ⊆ R. □

Lemma 3.6. Let G = A ∗H B. If G is weakly potent, then A and B satisfy
Condition (∗).

Proof. Let x ∈ A be of infinite order (similarly, we can show for if x ∈ B). Since
G is weakly potent, we can find a positive integer r, such that for each positive
integer n there exists N ◁f G such that N ∩ ⟨x⟩ = ⟨xrn⟩. Let NA = N ∩A and
NB = N ∩B. Then NA◁f A, NB◁f B and NA∩⟨x⟩ = N ∩A∩⟨x⟩ = N ∩⟨x⟩ =
⟨xrn⟩. Furthermore, we have NA∩H = (N ∩A)∩H = N ∩ (A∩H) = N ∩H =
N ∩ (B ∩H) = (N ∩B) ∩H = NB ∩H. □

3.2. The new criterion

From Theorem 3.1 with Lemmas 3.5 and 3.6, we have the following new
criterion.

Theorem 3.7. Let G = A∗HB, where A and B are subgroup separable groups.
Suppose C is a finitely generated normal subgroup of A and B such that C ≤f

H. Then G is weakly potent if and only if A and B satisfy Condition (∗).

Proof. Suppose G is weakly potent. Then the result follows from Lemma 3.6.
We now prove the converse by using Theorem 3.1. First, we show that A and

B are H-separable. Since A and B are subgroup separable and C is a finitely
generated subgroup of A and B, then A and B are C-separable. Let a ∈ A\H.
Since A is C-separable, then A = A/C is residually finite (see Lemma 2.3).
Note that H = H/C is finite and a = aC /∈ H. Then there exists N ◁f A such

that N ∩ aH = ∅. Let N be the preimage of N in A. Then a /∈ NH. Hence A
is H-separable. Similarly, B is H-separable.

Next note that by assumption, there exists a finitely generated normal sub-
group C of A and B such that C ≤f H. Hence by Lemma 3.5, for each R◁f H,
there exist NA ◁f A and NB ◁f B such that NA ∩H = NB ∩H ⊆ R. Finally,
by assumption, both A and B satisfy Condition (∗). Therefore, by Theorem
3.1, G is weakly potent. □

4. Weak potency for generalized free products

In this section, we shall apply our criterion Theorem 3.7 to show that the
generalized free product of finite extensions of finitely generated torsion-free
nilpotent groups amalgamating finitely generated normal subgroup (Theorem
4.7) or amalgamating a subgroup which itself is a finite extension of a finitely
generated normal and either a torsion-free nilpotent or an abelian subgroup of
both factor groups are weakly potent (Theorem 4.8).
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4.1. Characteristic weak potency of nilpotent groups

We begin by state an important property of finitely generated torsion-free
nilpotent group, that is, the concept of characteristic weak potency which will
play a central role in proving our results. This concept is a stronger form of
weak potency and it was first introduced by Evans [8] with the name completely
regular quotient.

Definition 4.1 ([8]). A group G is said to be characteristically weakly potent
if, for every element x ∈ G of infinite order, we can find a positive integer r
such that for each positive integer n, there exists a characteristic subgroup N
of finite index in G such that xN has order exactly rn in G/N .

Clearly every characteristically weakly potent group is weakly potent.

Lemma 4.2 ([8, 16]). Every finitely generated torsion-free nilpotent group is
characteristically weakly potent.

For convenience we gather here the various residual properties of finitely
generated torsion-free nilpotent groups and their finite extensions.

Lemma 4.3 ([8,17,21–23]). Let G be a finite extension of a finitely generated
nilpotent group. Then G is weakly potent and subgroup separable (and hence
residually finite).

4.2. Application of the new criterion

We begin by proving several essential lemmas.

Lemma 4.4. Let G = A ∗H B. Suppose C is a finitely generated normal
and either a torsion-free nilpotent or an abelian subgroup of A and B such
that C ≤f H. Furthermore, suppose A/S and B/S are weakly potent and
residually finite for any finitely generated normal subgroup S of A and B such
that S ≤f C. Then A and B satisfy Condition (∗).

Proof. Let x ∈ A be of infinite order (we can similarly show for if x ∈ B).
Case 1. Suppose that C ∩ ⟨x⟩ = 1. Then |xC| = ∞. Denote x = xC

in the group G = A ∗H B, where A = A/C, B = B/C and H = H/C.

Then |x| = ∞ in G. By assumption, A and B are weakly potent. Since H
is finite, by Lemma 2.6, G is weakly potent. Thus, we can find a positive
integer r such that for each positive integer n, there exists N ◁f G such that

xN has order exactly rn in the finite group G/N . Let N be the preimage
of N in G. Then N ◁f G and N ∩ ⟨x⟩ = ⟨xrn⟩. Now let NA = N ∩ A
and NB = N ∩ B. Then NA ◁f A and NB ◁f B. Furthermore we have
NA ∩ ⟨x⟩ = (N ∩ A) ∩ ⟨x⟩ = N ∩ (A ∩ ⟨x⟩) = N ∩ ⟨x⟩ = ⟨xrn⟩ and NA ∩H =
(N ∩A)∩H = N ∩ (A∩H) = N ∩H = N ∩ (B∩H) = (N ∩B)∩H = NB ∩H.

Case 2. Suppose that C ∩ ⟨x⟩ = ⟨xs⟩ for some positive integer s. Clearly
|xs| = ∞. Since C is a finitely generated normal and torsion-free nilpotent,
then C is characteristically weakly potent by Lemma 4.2 (if C is abelian, we use
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Lemma 4.2 of [23] instead and the rest of the proof are essentially the same).
Hence we can find a positive integer r′ such that for each positive integer n,
there exists NC charf C such that NC ∩ ⟨xs⟩ = ⟨xr′sn⟩. This implies that

NC ∩ ⟨x⟩ = (NC ∩ C) ∩ ⟨x⟩ = NC ∩ (C ∩ ⟨x⟩) = NC ∩ ⟨xs⟩ = ⟨xr′sn⟩. Since
NC charf C we have NC ◁f H and NC ◁ A, NC ◁ B. Denote x = xNC in

the group G = A ∗H B where A = A/NC , B = B/NC and H = H/NC . Then

|x| = r′sn in G. By assumption, A and B are residually finite. Since H is
finite, by Lemma 2.5, G is residually finite. Thus there exists N ◁f G such

that x, x2, . . . , xr′sn−1 /∈ N . Let N be the preimage of N in G. Then N ◁f G

and N ∩ ⟨x⟩ = ⟨xr′sn⟩. Now set NA = N ∩A and NB = N ∩B. Then we have

NA ◁f A, NB ◁f B such that NA ∩ ⟨x⟩ = ⟨xr′sn⟩ and NA ∩H = NB ∩H. The
lemma follows by noting that we can take r = r′s. □

Lemma 4.5. Let A be a finite extension of a finitely generated torsion-free
nilpotent group and H is a finitely generated normal subgroup of A. Then A
contains a finitely generated normal and torsion-free nilpotent subgroup C such
that C ≤f H.

Proof. Let A be a finite extension of a finitely generated torsion-free nilpotent
group, say W . Then W ◁f A. This implies that W ∩H is a finitely generated
normal and torsion-free nilpotent subgroup of A. Furthermore, we have W ∩
H◁fH. Let C = W∩H. Then C is a finitely generated normal and torsion-free
nilpotent subgroup of A such that C ≤f H. □

Recall that finite extensions of finitely generated nilpotent groups are weakly
potent and subgroup separable (see Lemma 4.3). Now let A be a finite extension
of a finitely generated nilpotent group W . Then W ◁f A. If C ◁ A, then
WC/C ∼= W/(W ∩ C) is finitely generated nilpotent and WC/C ◁f A/C.
This implies that A/C is a finite extension of the finitely generated nilpotent
group WC/C. Hence A/C is weakly potent and subgroup separable (and hence
residually finite). We summarized this fact as follows:

Lemma 4.6. If A is a finite extension of a finitely generated nilpotent group,
say W and C ◁ A, then A/C is a finite extension of the finitely generated
nilpotent group WC/C and A/C is weakly potent and subgroup separable.

Now we are ready to apply Theorem 3.7 to prove the following results.

Theorem 4.7. Let G = A∗HB, where A and B are finite extensions of finitely
generated torsion-free nilpotent groups and H is a finitely generated normal
subgroup of A and B. Then G is weakly potent.

Proof. We prove that G is weakly potent by using Theorem 3.7. Note that A
and B are subgroup separable and hence residually finite (see Lemma 4.3).

Next we show that there exists a finitely generated normal and torsion-free
nilpotent subgroup C of A and B such that C ≤f H. Since H is finitely
generated normal, by Lemma 4.5, A contains a finitely generated normal and
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torsion-free nilpotent subgroup R1 ≤f H. Similarly, B contains a finitely
generated normal and torsion-free nilpotent subgroup R2 ≤f H. Let R =
R1 ∩ R2. Then R is a finitely generated normal and torsion-free nilpotent
subgroup of H such that R ≤f H. Since H is finitely generated, by Lemma
3.3, there exists fH(R) ⊆ R such that fH(R) charf H and fH(R) is finitely
generated. Let C = fH(R). Then C is a finitely generated normal and torsion-
free nilpotent subgroup of A and B such that C ≤f H.

Now let S be any finitely generated normal subgroup of A and B such that
S ≤f C. Since A and B are finite extensions of finitely generated torsion-free
nilpotent groups, then by Lemma 4.6, A/S and B/S are weakly potent and
residually finite. Therefore by Lemma 4.4, A and B satisfy Condition (∗).
This implies that all the conditions of Theorem 3.7 are satisfied and hence G
is weakly potent. □

Theorem 4.8. Let G = A∗HB, where A and B are finite extensions of finitely
generated nilpotent groups. Suppose C is a finitely generated normal and either
a torsion-free nilpotent or an abelian subgroup of A and B such that C ≤f H.
Then G is weakly potent.

Proof. By Lemma 4.6, A/S and B/S are weakly potent and residually finite
for any finitely generated normal subgroup S of A and B such that S ≤f C.
So, the theorem follows from Lemma 4.4 and Theorem 3.7. □

5. Cyclic subgroup separability for generalized free products

In this section, we first show that the generalised free products of subgroup
separable groups amalgamating a subgroup which itself a finite extension of a
finitely generated normal subgroup of the factor groups are πc. Then we apply
our result to generalized free products of finite extensions of finitely generated
torsion-free nilpotent groups. Finally, we extend our result by proving their
tree products are cyclic subgroup separable.

5.1. Cyclic subgroup separability

Theorem 5.1. Let G = A∗HB, where A and B are subgroup separable groups.
Suppose C is a finitely generated normal subgroup of A and B such that C ≤f

H. Then G is πc.

Proof. We prove this theorem by using Theorem 2.8. Since A and B are sub-
group separable and C is a finitely generated subgroup of A and B, then A
and B are πc and C-separable. Since C is finitely generated and C ≤f H, H
is finitely generated. Therefore A and B are H-separable. So condition (a) of
Theorem 2.8 is satisfied.

By assumption there exists a finitely generated normal subgroup C of A
and B such that C ≤f H. Then by Lemma 3.5, for each R ◁f H, there exist
NA ◁f A and NB ◁f B such that NA ∩H = NB ∩H ⊆ R. So condition (b) of
Theorem 2.8 is satisfied. Therefore, G is πc by Theorem 2.8. □
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The following corollary is an immediate consequence of Theorem 5.1.

Corollary 5.2. Let G = A∗HB, where A and B are finite extensions of finitely
generated nilpotent groups and C is a finitely generated normal subgroup of A
and B such that C ≤f H. Then G is πc.

5.2. Cyclic subgroup separability for tree products

Next, we extend our previous results (i.e., Theorem 5.1 and Corollary 5.2)
to tree products. We begin with the following description of tree products.

Definition 5.3 ([22]). Let Γ be a tree with vertex set V and edge set E.
To each vertex v ∈ V , we assign a group Gv. To each edge e = (u, v) ∈
E (here u, v ∈ V ), we assign a group He together with monomorphisms αu

and βv embedding He into the two vertex groups at the end of edge e, Gu

and Gv respectively. The tree product T of Γ with vertex groups {Gv}v∈V

amalgamating the edge subgroups {He}e∈E is defined to be the group generated
by the generators and relations of the vertex groups and additional generators
αu(ge) = βv(ge) for each ge ∈ He and all e ∈ E (here, u and v are the vertices
joined by the edge e).

Definition 5.4. Let u, v ∈ V . If (u, v) ∈ E, i.e., u is adjacent to v in Γ. Then
we shall write u ∼ v and the edge subgroup shall be written as Huv.

If (u, v) ∈ E, i.e., if u ∼ v, then Huv is a subgroup of Gu and Gv. Since
(u, v) and (v, u) represent the same edge in Γ, we have Huv = Hvu.

Definition 5.5. Let I be a finite set. A family of subgroups {Ab}b∈I of a
group G is said to satisfy the intersection property if for each b0 ∈ I, there
exists an ordering (b1, b2, . . . , bn), where I \ {b0} = {b1, b2, . . . , bn} such that

Ab0 ∩Ab1Ab2 · · ·Abn = {1}.

We note here that Ab1Ab2 · · ·Abn is just a subset of G. Also, if b′1, b
′
2, . . . , b

′
n

is a permutation of b1, b2, . . . , bn, then it is not necessary that Ab1Ab2 · · ·Abn =
Ab′1

Ab′2
· · ·Ab′n

. However, if each Abi ◁G, then Ab1Ab2 · · ·Abn = Ab′1
Ab′2

· · ·Ab′n
and Ab1Ab2 · · ·Abn is a subgroup of G.

Lemma 5.6. Let I = {b1, b2, . . . , bn} and {Ab}b∈I be a family of subgroups of
a group G satisfying the intersection property. Suppose {Sb}b∈I is a family of
normal subgroups of G such that Sb ⊆ Ab for all b ∈ I. Then, for all a ∈ I,

Sb1Sb2 · · ·Sbn ∩Aa = Sa.

Proof. Clearly, Sa ⊆ Sb1Sb2 · · ·Sbn∩Aa. It remains to show that Sb1Sb2 · · ·Sbn∩
Aa ⊆ Sa. Let y ∈ Sb1Sb2 · · ·Sbn ∩Aa.

Since {Sb}b∈I is a family of normal subgroups of G, we have

Sb1Sb2 · · ·Sbn = Sbi1
Sbi2

· · ·Sbin
,

where i1, i2, . . . , in is a permutation of 1, 2, . . . , n. Let a = bj . Then,

Sb1Sb2 · · ·Sbn = SbjSb1 · · ·Sbj−1
Sbj+1

· · ·Sbn .
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So,

y = cjc1 · · · cj−1cj+1 · · · cn = h,

where ci ∈ Sbi and h ∈ Abj . This implies that

c−1
j h ∈ Abj ∩ Sb1 · · ·Sbj−1Sbj+1 · · ·Sbn .

By the intersection property, there is an ordering (d1, d2, . . . , dn−1), where I \
{bj} = {d1, d2, . . . , dn−1} such that

Abj ∩Ad1Ad2 · · ·Adn = {1}.

Since Sb1 · · ·Sbj−1
Sbj+1

· · ·Sbn = Sd1
Sd2

· · ·Sdn
, we have

c−1
j h ∈ Abj ∩Ad1

Ad2
· · ·Adn

= {1}.

Hence, y = h = cj ∈ Sbj and Sb1Sb2 · · ·Sbn ∩Abj ⊆ Sbj . □

Definition 5.7. For each u ∈ V , let

I(u) = {v ∈ V | v ∼ u}.

We say that the edge subgroups satisfying the intersection property if for each
edge (u, v) ∈ E, the family of subgroups {Huv}v∈I(u) of Gu satisfies the inter-
section property.

Let Γ be a tree with vertex set V and edge set E. Assume that |V | = n.
Then we can find a vertex vn, say, such that it is joined to a unique vertex, say
vn−1. Indeed, a tree always has such a vertex (usually called as external vertex ).
By removing the external vertex vn and the edge (vn−1, vn) from Γ, we obtain
a tree Γ′ with vertex set V ′ = V \ {vn} and edge set E′ = E \ {(vn−1, vn)}.

Let T be the tree product of Γ with vertex groups {Gu}u∈V amalgamating
the edge subgroups {He}e∈E and let T ′ be the tree product of Γ′ with vertex
groups {Gu}u∈V ′ amalgamating the edge subgroups {He}e∈E′ . Then

(1) T = T ′ ∗H Gvn ,

where H = Hvn−1vn = Hvnvn−1
.

Lemma 5.8. If the edge subgroups of Γ satisfy the intersection property, then
the edge subgroups of Γ′ also satisfy the intersection property.

Proof. Let IΓ(u) = {v ∈ V | v ∼ u in Γ} and IΓ′(u) = {v ∈ V ′ | v ∼ u in Γ′}.
Note that IΓ(u) = IΓ′(u) for all u ∈ V ′ \ {vn−1} and IΓ(vn−1) = IΓ′(vn−1) ∪
{vn}.

Let (u, v)∈E′. Suppose u ̸= vn−1. Then there is an ordering (b1, b2, . . . , bm),
where IΓ(u) \ {v} = {b1, b2, . . . , bm} such that

Huv ∩Hub1Hub2 · · ·Hubm = {1}.

Since IΓ′(u) = IΓ(u), we are done.
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Suppose u = vn−1. Then there is an ordering (c1, c2, . . . , cm′), where IΓ(u)\
{v} = {c1, c2, . . . , c′m} such that

Huv ∩Huc1Huc2 · · ·Hucm′ = {1}.

Now, vn = ci for some i and

Huc1 · · ·Huci−1
Huci+1

· · ·Hucm′ ⊆ Huc1Huc2 · · ·Hucm′ .

Therefore IΓ′(u) \ {v} = {c1, . . . , ci−1, ci+1, . . . , c
′
m} and

Huv ∩Huc1 · · ·Huci−1Huci+1 · · ·Hucm′ = {1}.

Hence, the edge subgroups of Γ′ also satisfy the intersection property. □

For the rest of this section, we shall assume that T is the tree product with
vertex groups {Gu}u∈V amalgamating the edge subgroups {Huv}u∼v and the
intersection property holds.

We first prove the following case where the vertex groups are residually finite
and the edge subgroups are finite.

Theorem 5.9. Let T be a tree product where the vertex groups are residually
finite and the edge subgroups are finite. Then T is residually finite.

Proof. We prove this theorem by induction on n. The case for n = 2 follows
from Lemma 2.5. Let n ≥ 3. We assume the theorem holds for any tree with
vertices fewer than n. Write the tree product T = T ′ ∗H Gvn as in (1).

We now prove that T is residually finite by using Lemma 2.5 again. By the
inductive hypothesis, T ′ is residually finite and by assumption, Gvn is residually
finite. Since H is finite, then T is residually finite by Lemma 2.5. □

Lemma 5.10. Let T be a tree product where the vertex groups are subgroup
separable and the edge subgroups satisfy the intersection property. Suppose for
each edge (u, v) ∈ E, there is a finitely generated normal subgroup Cuv of Gu

and Gv such that Cuv ≤f Huv. Here we assume that Cuv = Cvu. Let u0 ∈ V be
fixed and I(u0) = {v1, v2, . . . , vn}. Suppose P is a subgroup of the vertex group
Gu0

such that {P,Hv1 , Hv2 , . . . ,Hvn} satisfies the intersection property. If there
exists a finitely generated normal subgroup Cp of Gu0

such that Cp ≤f P , then
for any SP ◁f CP , there exists N ◁f T such that N ∩ P = fCP

(SP ).

Proof. For each u ∈ V \ {u0}, let

Su = Cuw1Cuw2 · · ·Cuwsu
,

where I(u) = {w1, w2, . . . , wsu} and

Su0
= fCP

(SP )Cu0v1Cu0v2 · · ·Cu0vn .

Note that Su is a finitely generated normal subgroup of Gu for all u ∈ V . By
Lemma 5.6, for all u ∈ V , and for each edge (u, v) ∈ E

Su ∩Huv = Cuv = Cvu = Sv ∩Hvu.



WEAK POTENCY AND CYCLIC SUBGROUP SEPARABILITY 1387

Therefore, we can form the tree product T with vertex groups Gu = Gu/Su

amalgamating the edge subgroups Huv = HuvSu/Su = HvuSv/Sv = Hvu,
where (u, v) ∈ E. Note that T is an epimorphic image of T under the natural
homomorphism, i.e., T is a quotient group of T . By Lemma 2.3, Gu is residually
finite for all u ∈ V . Since all the vertex groups of T are residually finite and
all the edge subgroups of T are finite, by Theorem 5.9, T is residually finite.

By Lemma 5.6,

Su0
∩ P = fCP

(SP ).

So, P = PSu0
/Su0

is finite. Therefore, there exists N◁f T such that N∩P = 1.

Let N be the preimage of N in T . We shall show that N is the required
subgroup.

Clearly, fCP
(SP ) ⊆ N ∩ P . It remains to show that N ∩ P ⊆ fCP

(SP ). Let
y ∈ N ∩ P . Then, y ∈ N ∩ P = 1. This implies that y = 1 in Gu0 = Gu0/Su0 .
Thus, y ∈ Su0

. So, y ∈ Su0
∩ P = fCP

(SP ). Hence, y ∈ fCP
(SP ) and

N ∩ P ⊆ fCP
(SP ). □

Lemma 5.11 ([12]). Let G = A∗HB, where A and B are H-separable. Suppose
for each R◁fH, there exist NA◁fA, NB◁fB such that NA∩H = NB∩H ⊆ R.
Let K be any subgroup of B. If B is K-separable, then G is K-separable.

Lemma 5.12. Let G = A ∗H B, where A and B are subgroup separable. Sup-
pose C is a finitely generated normal subgroup of A and B such that C ≤f H.
Let K be any subgroup of B. If B is K-separable, then G is K-separable.

Proof. We show that this lemma satisfies all the conditions in Lemma 5.11.
Clearly A and B are C-separable. Since C is finitely generated and C ≤f H,
H is finitely generated. Therefore A and B are H-separable. Furthermore, by
Lemma 3.5, for each R ◁f H, there exist NA ◁f A and NB ◁f B such that
NA ∩H = NB ∩H ⊆ R. The lemma now follows from Lemma 5.11. □

Lemma 5.13. Let T be a tree product where the vertex groups are subgroup
separable and the edge subgroups satisfy the intersection property. Suppose for
each edge (u, v) ∈ E, there is a finitely generated normal subgroup Cuv of Gu

and Gv such that Cuv ≤f Huv. Here we assume that Cuv = Cvu. Let u0 ∈ V
be fixed and P be a subgroup of Gu0

such that Gu0
is P -separable. Then T is

P -separable.

Proof. We prove this lemma by induction on n. The case for n = 2 follows
from Lemma 5.12. Let n ≥ 3. We assume the theorem holds for any tree with
vertices fewer than n. Write the tree product T = T ′ ∗H Gvn as in (1), where
H = Hvn−1vn = Hvnvn−1 . Let C = Cvn−1vn = Cvnvn−1 . We note here that C is
a finitely generated normal subgroup of Gvn and Gvn−1 and C ≤f H.

Next we show that the tree product T = T ′∗HGvn satisfies all the conditions
in Lemma 5.11. By Lemma 5.8, the edge subgroups of T ′ satisfy the intersection
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property. Since C is finitely generated and C ≤f H, H is finitely generated.
Therefore Gvn and Gvn−1

are H-separable. By induction, T ′ is H-separable.
Now let R◁f H be given. Since R◁f H and C ≤ H, then R∩C ◁f C. For

H = Hvn−1vn and C = Cvn−1vn , by Lemma 5.10, we can find NT ′ ◁f T ′ such
that NT ′ ∩ H = fC(R ∩ C). For H = Hvnvn−1

and C = Cvnvn−1
, by Lemma

3.4, we can find Nn ◁f Gvn such that Nn ∩ H = fC(R ∩ C). Hence the tree
product T = T ′ ∗H Gvn satisfies all the conditions of Lemma 5.11.

Suppose that u0 = vn. Since Gvn is P -separable, by Lemma 5.11, T is P -
separable. Suppose that u0 ̸= n. By induction, T ′ is P -separable and thus by
Lemma 5.11 again, T is P -separable. □

Now we are ready to prove our results.

Theorem 5.14. Let T be a tree product where the vertex groups are subgroup
separable and the edge subgroups satisfy the intersection property. Suppose for
each edge (u, v) ∈ E, there is a finitely generated normal subgroup Cuv of Gu

and Gv such that Cuv ≤f Huv. Here we assume that Cuv = Cvu. Then T is
πc.

Proof. We prove this theorem by induction on n. The case for n = 2 follows
from Theorem 5.1. Suppose n ≥ 3. We assume that the theorem holds for any
tree with vertices less than n. Write the tree product T = T ′ ∗H Gvn as in (1),
where H = Hvn−1vn = Hvnvn−1 . Let C = Cvn−1vn = Cvnvn−1 . We note here
that C is a finitely generated normal subgroup of Gvn and Gvn−1

and C ≤f H.
We complete the proof by using Theorem 2.8. By Lemma 5.8, the edge

subgroups of T ′ satisfy the intersection property. By induction, T ′ is πc and by
assumption, Gvn is πc. Since C is finitely generated and C ≤f H, H is finitely
generated. Therefore Gvn and Gvn−1 are H-separable. By Lemma 5.13, T ′ is
H-separable. So condition (a) of Theorem 2.8 is satisfied.

Let R ◁f H be given. Since R ◁f H and C ≤ H, then R ∩ C ◁f C. For
H = Hvn−1vn and C = Cvn−1vn , by Lemma 5.10, we can find NT ′ ◁f T ′ such
that NT ′ ∩ H = fC(R ∩ C). For H = Hvnvn−1

and C = Cvnvn−1
, by Lemma

3.5, we can find Nn ◁f Gvn such that Nn ∩H = fC(R ∩ C). So condition (b)
of Theorem 2.8 is satisfied. Therefore, T is πc by Theorem 2.8. □

From Theorem 5.14, we can get the following two corollaries.

Corollary 5.15 ([22]). Let T be a tree product where the vertex groups are finite
extensions of finitely generated torsion-free nilpotent groups and the edge sub-
groups are finitely generated normal subgroups in their respective vertex groups.
If the edge subgroups satisfy the intersection property, then T is πc.

Corollary 5.16. Let T be a tree product where the vertex groups are finite
extensions of finitely generated nilpotent groups and the edge subgroups satisfy
the intersection property. Suppose for each edge (u, v) ∈ E, there is a finitely
generated normal subgroup Cuv of Gu and Gv such that Cuv ≤f Huv. Here we
assume that Cuv = Cvu. Then T is πc.
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