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CYCLIC SUBGROUP SEPARABILITY OF CERTAIN GRAPH

PRODUCTS OF SUBGROUP SEPARABLE GROUPS

Kok Bin Wong and Peng Choon Wong

Abstract. In this paper, we show that tree products of certain subgroup
separable groups amalgamating normal subgroups are cyclic subgroup
separable. We then extend this result to certain graph product of certain
subgroup separable groups amalgamating normal subgroups, that is we
show that if the graph has exactly one cycle and the cycle is of length at
least four, then the graph product is cyclic subgroup separable.

1. Introduction

Cyclic subgroup separability or πc was introduced by Stebe [22]. Kim [12,
13] had given useful criteria for certain generalized free products and HNN
extensions to be cyclic subgroup separable. By using Kim’s criterion for HNN
extensions, Wong and Wong [28] had given a characterization for certain HNN
extensions with central associated subgroups to be cyclic subgroup separable.
Kim and Tang [17] had given a sufficient and necessary condition for HNN
extensions of cyclic subgroup separable groups with cyclic associated subgroups
to be cyclic subgroup separable.

Cyclic subgroup separability is used to show that certain generalized free
products are conjugacy separable (see [15, 16, 23, 24]). Conjugacy separability
is used by Grossman [8] to show that certain outer automorphism groups are
residually finite. In fact, she showed that if all the class-preserving automor-
phisms of a finitely generated conjugacy separable group G are inner, then the
outer automorphism group of G is residually finite. This criterion has been used
by many authors to show that certain outer automorphism groups are residu-
ally finite (see [2, 3, 6, 14, 18, 26, 29]). Recently, Zhou and Kim [31, 32] had
studied the class-preserving automorphisms of certain groups. Raptis, Talelli
and Varsos [21] showed that conjugacy separability and residually finiteness are
equivalent in certain HNN extensions (see also [26, 27] for similar results).
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Subgroup separability is a property stronger than cyclic subgroup separabil-
ity. It is well known that polycyclic groups and free groups are subgroup sepa-
rable (Hall [9], Mal’cev [19]). Since a finite extension of a subgroup separable
group is again subgroup separable, polycyclic-by-finite groups and free-by-finite
groups are subgroup separable. Metaftsis and Raptis [20] gave a sufficient and
necessary condition for certain HNN extensions to be subgroup separable. By
applying their result, Wong and Wong [30] showed that subgroup separability
and conjugacy separability are equivalent in certain HNN extensions.

In this paper, we will study cyclic subgroup separability of certain graph
products. This paper is motivated by the works of Kim [11], Allenby [1], and
Wong and Wong [25]. We will give a generalization of the Allenby’s Theorem
[1, Theorem C], which is a generalization of the Kim’s Theorem [11, Theorem
2.11]. In Section 2, we will discuss the generalization of Allenby’s Theorem (see
Theorem 2.5). In Sections 3, 4 and 5, we will provide the details of the proofs.

2. Generalizing Allenby’s theorem

The notation used here is standard. In addition, the following will be used
for any group G, N ⊳f G means N is a normal subgroup of finite index in G.
We denote by A ∗

H
B the generalised free product of A and B with the subgroup

H amalgamated. If G = A ∗

H
B and x ∈ G, then ‖x‖ denotes the free product

length of x in G. If G is a homomorphic image of G, then we use x to denote
the image of x in G.

Definition 2.1. A group G is called H-separable for the subgroup H if for
each x ∈ G\H , there exists N ⊳f G such that x /∈ HN .
G is called HK-separable for the subgroups H , K if for each x ∈ G\HK,

there exists N ⊳f G such that x /∈ HKN .
A group G is termed subgroup separable if G is H-separable for every finitely

generated subgroup H . A group G is termed cyclic subgroup separable (or πc
for short) if G is H-separable for every cyclic subgroup H . A group G is termed
residually finite if G is 1-separable.

Definition 2.2. Let Q be a simple graph (without loops and multiple edges)
with vertex set V (Q) and edge set E(Q). To each vertex v of Q assign a vertex
group Av, and to each edge e of Q assign an edge group He together with
monomorphisms αe and βe embedding He into the two vertex groups at the
end of e. The graph product G(Q) of the vertex groups amalgamating the edge
groups is defined to be the group generated by all the generators of the vertex
groups with defining relations given by the defining relations of all the vertex
groups together with the relations αe(ge) = βe(ge) for each ge in He.

Roughly speaking, if ij is an edge in E(Q), then Hij is a subgroup of Ai

and Aj . Since ij and ji represent the same edge in Q, we have Hij = Hji.
If Q is a tree, then G(Q) is called the tree product, whereas if Q is a cycle

(polygon), then G(Q) is called the polygonal product.
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The polygonal products of groups were introduced by Karrass, Pietrowski
and Solitar [10] in their study of the subgroup structure of the Picard group
PSL(2, Z[i]). By using their results, Brunner, Frame, Lee and Wielenberg
[5] characterized all the torson-free subgroups of finite index in the Picard
group. Polygonal products also form a large subclass in the class of one-relator
products of cyclic groups. For certain one-relator products, Fine, Howie and
Rosenberger [7] had proved a Freiheitssatz but the word problem and residual
finiteness are still unknown.

Definition 2.3. Let u, v ∈ V (Q). If u is adjacent to v in Q, i.e., uv ∈ E(Q),
then we shall write u ∼ v.

Suppose that for each u ∈ V (Q), the edge group Huv is normal in the vertex
group Au for all v ∈ V (Q) with v ∼ u. We say that the edge groups satisfy the
intersection property if for each edge uv ∈ E(Q),

Huv ∩
∏

w∼u,
w 6=v

Huw = 1.

We remark here that, since all the edge groups are normal in its vertex
group, the product

∏
w∼u,w 6=vHuw is the subgroup generated by all the edge

groups 〈Huw : w ∼ u,w 6= v〉 in Au. In fact, if the edge groups satisfy the
intersection property, the subgroup generated by all the edge groups in Au is
the direct product ⊗

w∼u

Huw.

Note that if Q is a cycle of length 4 and the intersection property holds, then
we have vertex groups A1, A2, A3, A4 and edge groupsH1, H2, H3, H4 such that
Ai ∩ Ai+1 = Hi and Hi ∩ Hi+1 = 1 for i = 1, 2, 3, 4 where the subscripts are
taken modulo 4. What Allenby [1, Theorem C] has proved is the following
theorem (see also [25, Theorem 4.6]):

Theorem 2.4 (Allenby’s Theorem). If Q is a cycle of length at least 4 and

the intersection property holds, then the polygonal product G(Q) of polycyclic-

by-finite groups amalgamating finitely generated normal subgroups is πc.

The objective of this paper is to prove the following theorem, which is a
generalization of Theorem 2.4.

Theorem 2.5. Suppose Q is a simple graph that has exactly one cycle. If the

length of the cycle is at least 4 and the intersection property holds, then the

graph product G(Q) of subgroup separable groups amalgamating finitely gener-

ated normal subgroups is πc.

Since polycyclic-by-finite is subgroup separable, the following corollary is a
consequence of Theorem 2.5.

Corollary 2.6. Suppose Q is a simple graph that has exactly one cycle. If the

length of the cycle is at least 4 and the intersection property holds, then the



1756 KOK BIN WONG AND PENG CHOON WONG

graph product G(Q) of polycyclic-by-finite groups amalgamating normal sub-

groups is πc. �

We shall need the following result of Kim [12, Proposition 1.2].

Theorem 2.7. Let G = A ∗

H
B. Suppose that

(a) A and B are πc and H-separable,

(b) for each N ⊳f H, there exist NA ⊳f A and NB ⊳f B such that NA∩H =
NB ∩H ⊂ N .

Then G is πc.

Note that to prove Theorem 2.5, we may assume that Q is connected. Let
C be the cycle of length at least 4 in Q. Then C contains at least 4 vertices,
say u1, u2, v1, v2, such that u1 ∼ v1 and u2 ∼ v2. Now if we remove the
edges u1v1 and u2v2 from Q, then the resulting graph Q− {u1v1, u2v2}, is the
union of two trees, say T1 and T2. Since the intersection property holds, we
conclude that the subgroup generated by Hu1v1 and Hu2v2 in G(T1) is the free
product Hu1v1 ∗Hu2v2 . Similarly, the free product Hu1v1 ∗Hu2v2 is the subgroup
generated by Hu1v1 and Hu2v2 in G(T2). Therefore

G(Q) = G(T1) ∗

(Hu1v1∗Hu2v2 )G(T2).

If we could show that G(T1) and G(T2) satisfy the conditions (a) and (b) of
Theorem 2.7, then Theorem 2.5 follows.

From now onwards throughout the paper, we shall assume the following:

(a) T is a tree;
(b) the intersection property holds;
(c) G(T ) is the tree product of subgroup separable groups amalgamating

finitely generated normal subgroups;
(d) the vertex groups are denoted by Au, u ∈ V (T ), and the edge groups

are denoted by Huv, uv ∈ E(T ).

Now, Theorem 2.5 follows from Theorem 2.7 applying Theorem 2.8, Lemma
2.9 and Lemma 2.10.

Theorem 2.8. G(T ) is πc.

Lemma 2.9. Let M and K be finitely generated normal subgroups of Ar and

Ak respectively where M ∩
∏

j∼rHrj = 1 = K ∩
∏

j∼k Hkj and r 6= k. Then

G(T ) is M ∗K-separable.

Let G be a finitely generated group and S ⊳f G. If S is a characteristic
subgroup of G, then we set fG(S) = S. Suppose S is not a characteristic
subgroup of G. Let [G : S] = m where m is a positive integer. Since G is
finitely generated, the number of subgroups of index m in G is finite. Let N
be the intersection of all these subgroups. Then N is a characteristic subgroup
of finite index in G and N ⊆ S. We set fG(S) = N (see [25, Lemma 3.1]).
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Lemma 2.10. Let M and K be finitely generated normal subgroups of Ar and

Ak respectively where M ∩
∏

j∼r Hrj = 1 = K∩
∏

j∼k Hkj and r 6= k. Then for

each S ⊳f (M ∗K), there exists N ⊳f G(T ) such that N ∩ (M ∗K) = fM∗K(S).

3. Proof of Theorem 2.8

Lemma 3.1. Let A be a subgroup separable group and H1, H2, . . . , Hn be

finitely generated normal subgroups of A such that Hi ∩
∏

j 6=iHj = 1 for

i = 1, 2, . . . , n. If Si ⊳fHi, then there exists N ⊳fA such that N ∩Hi = fHi
(Si),

and NHi ∩NHj = N , j 6= i, 1 ≤ i, j ≤ n.

Proof. Let S = Πn
i=1fHi

(Si) and H = Πn
i=1Hi. Since Hi is finitely generated

and fHi
(Si) ⊳f Hi, we have fHi

(Si) is finitely generated and thus S is finitely
generated. Note that S is a finitely generated normal subgroup in A. Therefore
A = A/S is residually finite and H = H/S is finite. So, there exists N ⊳f A

such that N ∩ H = 1. Let N be the preimage of N . Now, we show that
N ∩ Hi = fHi

(Si). Clearly fHi
(Si) ⊆ N ∩ Hi. Let y ∈ N ∩ Hi. This implies

that y = 1, and thus y ∈ S. So y = a1a2 · · · an where ak ∈ fHk
(Sk), and

ya−1
i ∈ Hi ∩ Πk 6=iHk = 1. Hence y = ai ∈ fHi

(Si) and N ∩Hi = fHi
(Si).

Next, we show that NHi ∩ NHj = N . Clearly N ⊆ NHi ∩ NHj . Let
x ∈ NHi ∩ NHj where i 6= j. Then x = n1hi = n2hj where n1, n2 ∈ N ,

hi ∈ Hi and hj ∈ Hj . This implies that hih
−1
j ∈ N ∩H . Therefore hih

−1
j = 1,

and thus hih
−1
j ∈ S. Let hih

−1
j = b1b2 · · · bn where bk ∈ fHk

(Sk). Then

hib
−1
i ∈ Hi ∩ Πk 6=iHk = 1 and hi = bi ∈ fHi

(Si) ⊆ N . Hence x ∈ N and
NHi ∩NHj = N . �

Lemma 3.2. Let M and K be finitely generated normal subgroups of Ar and

Ak respectively where M ∩
∏

j∼r Hrj = 1 = K∩
∏

j∼k Hkj and r 6= k. Then for

any Sr ⊳f M and Sk ⊳f K, there exists N ⊳f G(T ) such that N ∩M = fM (Sr),
N ∩K = fK(Sk) and NM ∩NK = N .

Proof. By Lemma 3.1, there exists Nr ⊳f Ar such that Nr ∩M = fM (Sr) and
Nr ∩ Hrj = fHrj

(Hrj) = Hrj for all j with j ∼ r. Similarly, there exists
Nk ⊳f Ak such that Nk ∩K = fK(Sk) and Nk ∩Hkj = Hkj for all j with j ∼ k.

Let Ni =
∏

j∼iHij for i 6= r, k. Let φi be the natural epimorphism from

Ai onto Ai/Ni for all i ∈ V (T ) = {1, 2, . . . , n}. Then these epimorphisms

can be extended to an epimorphism φ from G(T ) onto G(T ) where G(T ) =
A1/N1 ∗A2/N2 ∗ · · · ∗An/Nn.

Since G is a free product and r 6= k, M ∩K = 1. Since G is residually finite
by [4, Theorem 2] andMK is finite, there exists N⊳fG such that N∩MK = 1.

Let N be the preimage of N . We shall show that N is the required subgroup.
First we note that N ∩M = N ∩ Ar ∩M = Nr ∩M = fM (Sr). Similarly,

N ∩ K = fK(Sk). So, it remains to show that NM ∩ NK = N . Clearly
N ⊆ NM ∩ NK. Now let y ∈ NM ∩ NK. Then y = n1m1 = n2m2 where
n1, n2 ∈ N , m1 ∈ M and m2 ∈ K. It is sufficient to show m1 ∈ N . Now
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m1m
−1
2 ∈ N implies m1m

−1
2 ∈ N ∩MK = 1. Since M ∩ K = 1, we have

m1 = 1 and m1 ∈ N . �

We shall need the following lemma of Kim [11, Theorem 2.3].

Lemma 3.3. Let G = A ∗

H
B where A,B are H-separable. Suppose for each

NH ⊳f H, there exist NA ⊳f A,NB ⊳f B such that NA ∩H = NB ∩ H ⊆ NH .

Let S be any subgroup of B. If B is S-separable, then G is S-separable. �

Lemma 3.4. Let M be a finitely generated subgroup of Ar. Then G(T ) is

M -separable.

Proof. Let V (T ) = {1, 2, . . . , n}. We shall use induction on n. The case n = 2
follows from Lemma 3.1 and Lemma 3.3. Suppose n ≥ 3. Note that the tree
T has a vertex of degree one, say n, which is joined to a unique vertex, say
n − 1. Let T1 be the tree obtained by removing the vertex n and the edge
n(n−1) from T . Then G(T ) = G(T1) ∗

H
An where H = H(n−1)n = Hn(n−1). By

induction, G(T1) is H-separable. By Lemma 3.2, for any NH ⊳f H , there exists
N1 ⊳f G(T1) such that N1∩H = fH(NH). Since An is subgroup separable, it is
H-separable. By Lemma 3.1, there exists N2⊳fAn such thatN2∩H = fH(NH).

Suppose r = n. Since An is M -separable, by Lemma 3.3, G(T ) is M -
separable.

Suppose r 6= n. Then by induction, G(T1) is M -separable and thus by
Lemma 3.3 again, G(T ) is M -separable. �

We are now ready to prove Theorem 2.8.

Proof of Theorem 2.8. We use induction on n. The case n = 2 follows from
Lemma 3.1 and Theorem 2.7. Suppose n ≥ 3. As in Lemma 3.4, we may
assume that n is a vertex of degree one and is joined to a unique vertex, say
n− 1. Then G(T ) = G(T1) ∗

H
An where T1 is the tree obtained by removing the

vertex n and the edge n(n−1) from T andH = H(n−1)n = Hn(n−1). By Lemma
3.4, G(T1) is H-separable, and by Lemma 3.2, for any NH ⊳f H , there exists
N1 ⊳f G(T1) such that N1 ∩ H = fH(NH). Furthermore, An is H-separable,
and by Lemma 3.1, there exists N2 ⊳f An such that N2 ∩H = fH(NH). Since
G(T1) is πc by the induction hypothesis and An is πc, it follows from Theorem
2.7 that G(T ) is πc. �

4. Proof of Lemma 2.9

We shall need the following two lemmas from [25, Lemmas 4.1 and 4.2]

Lemma 4.1. Let G = A ∗

H
B and M,K be subgroups of A,B respectively with

M∩H = 1 = K∩H. Suppose for each NH⊳fH there exist NA⊳fA,NB⊳fB such

that NA ∩H = NB ∩H ⊆ NH and NAH ∩NAM = NA, NBH ∩NBK = NB.

If A is H,M,HM,MH-separable and B is H,K,HK,KH-separable, then G
is MK-separable.
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Lemma 4.2. Let G = A ∗

H
B and M,K be subgroups of A,B respectively with

M ∩ H = 1 = K ∩ H. Suppose A,B,M,K satisfy the hypothesis of Lemma

4.1. Then G is M ∗K-separable.

Lemma 4.3. Let G = A ∗

H
B and M,K be subgroups of B. Suppose for each

NH ⊳f H there exist NA ⊳f A,NB ⊳f B such that NA ∩H = NB ∩H ⊆ NH . If

A is H-separable and B is H,MK-separable, then G is MK-separable.

Proof. Let g ∈ G−MK.
Case 1. g ∈ B. Since B is MK-separable, there exists P ⊳f B such that

g /∈ PMK. Let NH = P ∩H . By assumption, there exist NA ⊳f A,NB ⊳f B
such that NA ∩ H = NB ∩ H ⊆ NH . Let RA = NA, RB = NB ∩ P . Then
RA∩H = RB ∩H . Let G = A/RA

∗

H
B/RB where H = HRA/RA = HRB/RB.

Clearly, G is a homomorphic image of G, and g /∈ MK. Since G is residually
finite by [4, Theorem 2] and MK is finite, there exists N ⊳f G such that

g /∈ NMK. Let N be the preimage of N . Then g /∈ NMK.
Case 2. g ∈ A − H or g /∈ A ∪ B. We will only consider the case g =

a1b1a2b2 · · ·anbn where ai ∈ A − H , bi ∈ B − H , i = 1, 2, . . . , n. The other
cases are similar. Since A isH-separable, B isH-separable, there existMA⊳fA,
MB ⊳fB such that ai /∈MAH , bi /∈MBH , i = 1, 2, . . . , n. Let NH =MA∩MB .
By assumption, there exist NA ⊳f A, NB ⊳f B such that NA ∩H = NB ∩H ⊆
NH . Let RA = NA ∩MA, RB = NB ∩MB. Then RA ∩ H = RB ∩ H . Let
G = A/RA

∗

H
B/RB where H = HRA/RA = HRB/RB. Clearly, ‖g‖ = ‖g‖.

So g /∈MK. Furthermore, MK is finite. We can now proceed as in Case 1 to
complete the proof. �

Lemma 4.4. Let M and K be finitely generated normal subgroups of Ar and

Ak respectively where M ∩
∏

j∼rHrj = 1 = K ∩
∏

j∼kHkj (here we allow

r = k). Then G(T ) is MK-separable.

Proof. Let V (T ) = {1, 2, . . . , n}. We shall use induction on n. The case n = 2
follows from Lemma 3.1, Lemma 4.1 and Lemma 4.3. Suppose n ≥ 3. As
in Lemma 3.4, we may assume that n is a vertex of degree one and is joined
to a unique vertex, say n − 1. Then G(T ) = G(T1) ∗

H
An where T1 is the

tree obtained by removing the vertex n and the edge n(n − 1) from T and
H = H(n−1)n = Hn(n−1).

Case 1. M ≤ G(T1) and K ≤ An. By the induction, G(T1) is MH,HM -
separable. By Lemma 3.4, G(T1) is M,H-separable. By Lemma 3.2, for any
SH ⊳f H , SM ⊳f M and SK ⊳f K, there exists N1 ⊳f G(T1) such that N1 ∩M =
fM (SM ), N1∩H = fH(SH) andN1M∩N1H = N1. By Lemma 3.1, there exists
N2⊳fAn such that N2∩K = fK(SK), N2∩H = fH(SH) andN2K∩N2H = N2.

Since An is subgroup separable, it is H,K,HK,KH-separable. Hence by
Lemma 4.1, G(T ) is MK-separable.

Case 2. K ≤ G(T1) and M ≤ An. The argument is similar to Case 1.
Case 3. K,M ≤ G(T1). By induction, G(T1) isMK-separable. By Lemma

3.4, G(T1) is H-separable, and by Lemma 3.2, for any SH ⊳f H there exists
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N1 ⊳f G(T1) such that N1 ∩ H = fH(SH). Furthermore, An is H-separable,
and by Lemma 3.1, for any SH ⊳f H there exists N2 ⊳f An such that N2 ∩H =
fH(SH). Hence by Lemma 4.3, G(T ) is MK-separable.

Case 4. K,M ≤ An. The argument is similar to Case 3. �

We are now ready to prove Lemma 2.9.

Proof of Lemma 2.9. Let V (T ) = {1, 2, . . . , n}. We shall use induction on n.
The case n = 2 follows from Lemma 3.1 and Lemma 4.2. Suppose n ≥ 3.
As in Lemma 3.4, we may assume that n is a vertex of degree one and is
joined to a unique vertex, say n − 1. Then G(T ) = G(T1) ∗

H
An where T1 is

the tree obtained by removing the vertex n and the edge n(n− 1) from T and
H = H(n−1)n = Hn(n−1).

Case 1. M ≤ G(T1) and K ≤ An. By Lemma 4.4, G(T1) is MH-separable
and HM -separable. By Lemma 3.4, G(T1) is M,H-separable. By Lemma 3.1
and Lemma 3.2, G(T1) and An satisfy the hypothesis of Lemma 4.2. Hence
G(T ) is M ∗K-separable.

Case 2. K ≤ G(T1) and M ≤ An. The argument is similar to Case 1.
Case 3. K,M ≤ G(T1). By induction, G(T1) is M ∗ K-separable. By

Lemma 3.4, G(T1) is H-separable. It then follows from Lemma 3.1, Lemma
3.2 and Lemma 3.3 that G(T ) is M ∗K-separable. �

5. Proof of Lemma 2.10

Lemma 5.1. Let G = A ∗

H
B and M,K be subgroups of A,B respectively with

M∩H = 1 = K∩H. Let S⊳f (M ∗K) and suppose there exist NA⊳fA, NB ⊳fB
such that NA ∩H = H = NB ∩H and NA ∩M = S ∩M , NB ∩K = S ∩K.

Then there exists N ⊳f G such that N ∩ (M ∗K) = S.

Proof. Let G = A/NA ∗ B/NB. Since NA ∩ H = H = NB ∩ H , the natural
epimorphisms from A onto A/NA and from B onto B/NB can be extended to
an epimorphism ψ from G onto G.

First we show that Ker ψ ∩ (M ∗ K) ⊆ S. Let g be any element with the
smallest length such that g ∈ Ker ψ ∩ (M ∗ K) but g /∈ S. Without loss of
generality we may assume g = m1k1 · · ·mnkn where mi ∈ M,ki ∈ K. Then
g = m1k1 · · ·mnkn = 1. Hence mi = 1 or ki = 1 for some i. Suppose mi = 1
(the case ki = 1 is similar). Then mi ∈ NA for M = MNA/NA. Hence
mi ∈ NA ∩M = S ∩M ⊆ S. Now

g = (m1k1 · · ·mi−1ki−1)mi(m1k1 · · ·mi−1ki−1)
−1(m1k1 · · ·mi−1ki−1)ki · · ·mnkn.

But (m1k1 · · ·mi−1ki−1)mi(m1k1 · · ·mi−1ki−1)
−1 ∈ S since mi ∈ S⊳f (M ∗K).

This implies that g1 = (m1k1 · · ·mi−1ki−1)ki · · ·mnkn /∈ S. Furthermore g1 =
1 for mi = 1. Therefore g1 ∈ Ker ψ∩(M ∗K), but ‖g1‖ < ‖g‖, a contradiction.
Thus Ker ψ ∩ (M ∗K) ⊆ S.

Next we show that S ∩M = 1 and S ∩ K = 1. Let y ∈ S ∩ M . Then
y = s = m where s ∈ S and m ∈ M . So sm−1 = 1, and this implies that
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sm−1 ∈ Ker ψ ∩ (M ∗K) ⊆ S. Therefore m ∈ S ∩M ⊆ NA. This implies that
m = 1, and thus y = 1. Hence S ∩M = 1. Similarly, S ∩K = 1.

Now G = A/NA ∗ B/NB = A/NA
∗

M
(M ∗ K) ∗

K
B/NB. Since S ∩M = 1,

M = MS/S ≃ M/(S ∩M) ≃ M . Similarly, S ∩ K = 1 implies that K =

KS/S ≃ K/(S ∩K) ≃ K. So, we can form G = A/NA
∗

M
((M ∗K)/S) ∗

K
B/NB.

Clearly, G is a homomorphic image of G, and thus G is a homomorphic image
of G.

Since (M ∗K)/S is finite and G is residually finite by [4, Theorem 2], there

exists N ⊳f G such that N ∩ ((M ∗K)/S) = 1. Let N be the preimage of N
in G. We shall show that N ∩ (M ∗K) = S. Clearly S ⊆ N ∩ (M ∗K). Now
let g2 ∈ N ∩ (M ∗K). Since g2 = 1, we have g2 ∈ S. Let g2 = t where t ∈ S.

Then g2t−1 = 1, and this implies that g2t
−1 ∈ Ker ψ ∩ (M ∗K) ⊆ S. Hence

g2 ∈ S and N ∩ (M ∗K) = S. �

We are now ready to prove Lemma 2.10.

Proof of Lemma 2.10. Let S ⊳f (M ∗ K) be given. Let SM = fM∗K(S) ∩M
and SK = fM∗K(S) ∩K. Then SM and SK are characteristic subgroups of M
and K, respectively.

Since T is a tree, there exists a unique path from the vertex r to the vertex
k. Let i0j0 be an edge on this path. Let T1 and T2 be the two disjoint trees
obtained by removing the edge i0j0 from T . Then G(T ) = G(T1) ∗

H
G(T2) where

H = Hi0j0 = Hj0i0 and Ar ⊆ G(T1) and Ak ⊆ G(T2). For all j with j ∼ r, let
Srj = Hrj , and for all j with j ∼ k, let Skj = Hkj .

By Lemma 3.1, there exists Nr ⊳f Ar such that Nr ∩Hrj = fHrj
(Srj) = Hrj

and Nr ∩M = fM (SM ) = SM . Let ψ1 be the epimorphism from G(T1) onto
Ar/Nr where ψ1(a) = 1, ∀a ∈ Ai ⊆ G(T1), i 6= r and ψ1(a) = aNr, ∀a ∈
Ar. Let N1 = Ker ψ1. Then N1 ⊳f G(T1), N1 ∩M = fM (SM ) = SM and
N1 ∩H = H . Similarly there is a N2 ⊳f G(T2) with N2 ∩K = fK(SK) = SK

and N2 ∩H = H . Therefore by Lemma 5.1, there exists N ⊳f G(T ) such that
N ∩ (M ∗K) = fM∗K(S). �
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