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CYCLIC SUBGROUP SEPARABILITY OF CERTAIN GRAPH
PRODUCTS OF SUBGROUP SEPARABLE GROUPS

Kok BIN WoNG AND PENG CHOON WONG

ABSTRACT. In this paper, we show that tree products of certain subgroup
separable groups amalgamating normal subgroups are cyclic subgroup
separable. We then extend this result to certain graph product of certain
subgroup separable groups amalgamating normal subgroups, that is we
show that if the graph has exactly one cycle and the cycle is of length at
least four, then the graph product is cyclic subgroup separable.

1. Introduction

Cyclic subgroup separability or 7. was introduced by Stebe [22]. Kim [12,
13] had given useful criteria for certain generalized free products and HNN
extensions to be cyclic subgroup separable. By using Kim’s criterion for HNN
extensions, Wong and Wong [28] had given a characterization for certain HNN
extensions with central associated subgroups to be cyclic subgroup separable.
Kim and Tang [17] had given a sufficient and necessary condition for HNN
extensions of cyclic subgroup separable groups with cyclic associated subgroups
to be cyclic subgroup separable.

Cyclic subgroup separability is used to show that certain generalized free
products are conjugacy separable (see [15, 16, 23, 24]). Conjugacy separability
is used by Grossman [8] to show that certain outer automorphism groups are
residually finite. In fact, she showed that if all the class-preserving automor-
phisms of a finitely generated conjugacy separable group G are inner, then the
outer automorphism group of G is residually finite. This criterion has been used
by many authors to show that certain outer automorphism groups are residu-
ally finite (see [2, 3, 6, 14, 18, 26, 29]). Recently, Zhou and Kim [31, 32] had
studied the class-preserving automorphisms of certain groups. Raptis, Talelli
and Varsos [21] showed that conjugacy separability and residually finiteness are
equivalent in certain HNN extensions (see also [26, 27] for similar results).
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Subgroup separability is a property stronger than cyclic subgroup separabil-
ity. It is well known that polycyclic groups and free groups are subgroup sepa-
rable (Hall [9], Mal’cev [19]). Since a finite extension of a subgroup separable
group is again subgroup separable, polycyclic-by-finite groups and free-by-finite
groups are subgroup separable. Metaftsis and Raptis [20] gave a sufficient and
necessary condition for certain HNN extensions to be subgroup separable. By
applying their result, Wong and Wong [30] showed that subgroup separability
and conjugacy separability are equivalent in certain HNN extensions.

In this paper, we will study cyclic subgroup separability of certain graph
products. This paper is motivated by the works of Kim [11], Allenby [1], and
Wong and Wong [25]. We will give a generalization of the Allenby’s Theorem
[1, Theorem C], which is a generalization of the Kim’s Theorem [11, Theorem
2.11]. In Section 2, we will discuss the generalization of Allenby’s Theorem (see
Theorem 2.5). In Sections 3, 4 and 5, we will provide the details of the proofs.

2. Generalizing Allenby’s theorem

The notation used here is standard. In addition, the following will be used
for any group G, N <y G means N is a normal subgroup of finite index in G.
We denote by A ;; B the generalised free product of A and B with the subgroup
H amalgamated. If G = A, B and x € G, then ||z|| denotes the free product
length of z in G. If G is a homomorphic image of G, then we use T to denote
the image of z in G.

Definition 2.1. A group G is called H-separable for the subgroup H if for
each € G\ H, there exists N <y G such that x ¢ HN.

G is called HK-separable for the subgroups H, K if for each x € G\HK,
there exists N < G such that + ¢ HKN.

A group G is termed subgroup separable if G is H-separable for every finitely
generated subgroup H. A group G is termed cyclic subgroup separable (or m,
for short) if G is H-separable for every cyclic subgroup H. A group G is termed
residually finite if G is 1-separable.

Definition 2.2. Let @ be a simple graph (without loops and multiple edges)
with vertex set V(Q) and edge set E(Q). To each vertex v of ) assign a vertex
group A,, and to each edge e of ) assign an edge group H. together with
monomorphisms a,. and (. embedding H, into the two vertex groups at the
end of e. The graph product G(Q) of the vertex groups amalgamating the edge
groups is defined to be the group generated by all the generators of the vertex
groups with defining relations given by the defining relations of all the vertex
groups together with the relations ae(ge) = Pe(ge) for each g in H,.

Roughly speaking, if ij is an edge in E(Q), then H;; is a subgroup of A;
and Aj;. Since ij and ji represent the same edge in ), we have H;; = Hj;.

If Q is a tree, then G(Q) is called the tree product, whereas if @ is a cycle
(polygon), then G(Q) is called the polygonal product.
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The polygonal products of groups were introduced by Karrass, Pietrowski
and Solitar [10] in their study of the subgroup structure of the Picard group
PSL(2, Z[i]). By using their results, Brunner, Frame, Lee and Wielenberg
[5] characterized all the torson-free subgroups of finite index in the Picard
group. Polygonal products also form a large subclass in the class of one-relator
products of cyclic groups. For certain one-relator products, Fine, Howie and
Rosenberger [7] had proved a Freiheitssatz but the word problem and residual
finiteness are still unknown.

Definition 2.3. Let u,v € V(Q). If u is adjacent to v in Q, i.e., uv € E(Q),
then we shall write u ~ v.

Suppose that for each u € V(Q), the edge group H,, is normal in the vertex
group A, for all v € V(Q) with v ~ u. We say that the edge groups satisfy the
intersection property if for each edge uv € E(Q),

Hyy N H Hyw = 1.
w~u,
wH#v
We remark here that, since all the edge groups are normal in its vertex

group, the product HwNu,w 2v H,., is the subgroup generated by all the edge
groups (Hyq, @ w ~ u,w # v) in A,. In fact, if the edge groups satisfy the
intersection property, the subgroup generated by all the edge groups in A, is
the direct product

&

Note that if @ is a cycle of length 4 and the intersection property holds, then
we have vertex groups Aj, As, Az, A4 and edge groups Hi, Ho, Hs, H4 such that
A;NAi41 = H; and H;NH;4q =1 for i = 1,2,3,4 where the subscripts are
taken modulo 4. What Allenby [1, Theorem C] has proved is the following
theorem (see also [25, Theorem 4.6]):

Theorem 2.4 (Allenby’s Theorem). If Q is a cycle of length at least 4 and
the intersection property holds, then the polygonal product G(Q) of polycyclic-
by-finite groups amalgamating finitely generated normal subgroups is ..

The objective of this paper is to prove the following theorem, which is a
generalization of Theorem 2.4.

Theorem 2.5. Suppose Q is a simple graph that has exactly one cycle. If the
length of the cycle is at least 4 and the intersection property holds, then the
graph product G(Q) of subgroup separable groups amalgamating finitely gener-
ated normal subgroups is ..

Since polycyclic-by-finite is subgroup separable, the following corollary is a
consequence of Theorem 2.5.

Corollary 2.6. Suppose Q is a simple graph that has exactly one cycle. If the
length of the cycle is at least 4 and the intersection property holds, then the
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graph product G(Q) of polycyclic-by-finite groups amalgamating normal sub-
groups 18 Te. [l

We shall need the following result of Kim [12, Proposition 1.2].

Theorem 2.7. Let G = A}, B. Suppose that

(a) A and B are 7. and H-separable,
(b) for each N <y H, there exist Na<y A and Np<y B such that NyNH =
NgNHCN.

Then G is m,.

Note that to prove Theorem 2.5, we may assume that () is connected. Let
C be the cycle of length at least 4 in Q. Then C contains at least 4 vertices,
say ui,Usz,v1,v2, such that u; ~ v; and us ~ vo. Now if we remove the
edges u1v1 and ugve from @, then the resulting graph Q — {uqv1, ugvs}, is the
union of two trees, say 717 and T5. Since the intersection property holds, we
conclude that the subgroup generated by Hy, ., and Hy,y, in G(T1) is the free
product Hy, y, * Hy e, . Similarly, the free product Hy, v, * Hy,e, is the subgroup
generated by H.,,, and Hy,,, in G(T3). Therefore

G(Q) = G(Tl) (Huyy vy :Huzvz) G(T2)

If we could show that G(T1) and G(T3) satisty the conditions (a) and (b) of
Theorem 2.7, then Theorem 2.5 follows.
From now onwards throughout the paper, we shall assume the following:

1V1

(a) T is a tree;

(b) the intersection property holds;

(¢) G(T) is the tree product of subgroup separable groups amalgamating
finitely generated normal subgroups;

(d) the vertex groups are denoted by A,, u € V(T), and the edge groups
are denoted by Hy,, wv € E(T).

Now, Theorem 2.5 follows from Theorem 2.7 applying Theorem 2.8, Lemma
2.9 and Lemma 2.10.

Theorem 2.8. G(T) is 7.

Lemma 2.9. Let M and K be finitely generated normal subgroups of A, and
Ay respectively where M N [],., Hyj = 1= KN[[;, Hi; and r # k. Then
G(T) is M x K -separable.

Let G' be a finitely generated group and S <y G. If S is a characteristic
subgroup of G, then we set fg(S) = S. Suppose S is not a characteristic
subgroup of G. Let [G : S] = m where m is a positive integer. Since G is
finitely generated, the number of subgroups of index m in G is finite. Let IV
be the intersection of all these subgroups. Then N is a characteristic subgroup
of finite index in G and N C S. We set fg(S) = N (see [25, Lemma 3.1]).
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Lemma 2.10. Let M and K be finitely generated normal subgroups of A, and
Ay respectively where M O[], Hrj =1=KN[[;_y Hej andr # k. Then for
each S <y (M x K), there exists N <y G(T') such that N N (M * K) = fax (5).

3. Proof of Theorem 2.8

Lemma 3.1. Let A be a subgroup separable group and Hy,Hs,...,H, be
finitely generated normal subgroups of A such that H; N H#i H; =1 for
i=1,2,...,n. If S;<y H;, then there exists N<y A such that NNH; = fu,(S:),
and NHiNNH; =N, j#1i,1<4,j<n.

Proof. Let S = I, fu,(S;) and H = II? ; H;. Since H; is finitely generated
and fg,(S;) <y H;, we have fy,(S;) is finitely generated and thus S is finitely
generated. Note that .S is a finitely generated normal subgroup in A. Therefore
A = A/S is residually finite and H = H/S is finite. So, there exists N <5 A
such that NN H = 1. Let N be the preimage of N. Now, we show that
NNH; = fu,(S;). Clearly fu,(S;) € NN H;. Let y € NN H;. This implies
that § = 1, and thus y € S. So y = ajas---a, where a;, € fy,(Sk), and
ya; ' € H;y Ny Hy = 1. Hence y = a; € fu,(S;) and N N H; = fu,(S;).
Next, we show that NH; "N NH; = N. Clearly N € NH; N NH;. Let
xr € NH; N NH; where ¢ # j. Then x = nih; = ngh; where ny,ngy € N,
h; € H; and h; € H;. This implies that hihj_1 € N N H. Therefore hmj_1 =1,
and thus h;h;' € S. Let hih;' = biby---b, where by € fm, (Sk). Then
hib;t € HiNMpHy = 1 and h; = b; € fu,(S;) € N. Hence z € N and
NH;NNH; = N. O

Lemma 3.2. Let M and K be finitely generated normal subgroups of A, and
Ay respectively where M O[], Hrj =1=KN[[;_, Hej andr # k. Then for
any Sy ¢ M and Sy, <y K, there exists N <y G(T') such that NN M = far(S,),
NNK = fx(Sy) and NMNNK = N.

Proof. By Lemma 3.1, there exists N, <y A, such that N, N M = fa(S,) and
N, NV Hyj = fu,,(Hy;) = Hyj for all j with j ~ r. Similarly, there exists
Ny <¢ A such that NN K = fr(Sk) and Ny NHy; = Hy; for all j with j ~ k.

Let N; = ij. H;; for i # r, k. Let ¢; be the natural epimorphism from
A; onto A;/N; for all i € V(T) = {1,2,...,n}. Then these epimorphisms
can be extended to an epimorphism ¢ from G(T') onto G(T') where G(T) =
Al/Nl * AQ/NQ E IR 3 An/Nn

Since G is a free product and r # k, M N K = 1. Since G is residually finite
by [4, Theorem 2] and M K is finite, there exists N<; G such that NNMK = 1.
Let N be the preimage of N. We shall show that N is the required subgroup.

First we note that NN M = NNA. NM =N, NM = fy(S,). Similarly,
NN K = fg(Sk). So, it remains to show that NM N NK = N. Clearly
N CNMNONK. Now let ye NMNNK. Then y = nymi = namg where
ny,ne € N, my € M and mo € K. It is sufficient to show m; € N. Now
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mymy' € N implies m;m, € NN MK = 1. Since M N K = 1, we have
m1=1and m; € N. O

We shall need the following lemma of Kim [11, Theorem 2.3].

Lemma 3.3. Let G = A}, B where A, B are H-separable. Suppose for each
Np <y H, there exist Na <y A, Np <y B such that NN H = NgNH C Npy.
Let S be any subgroup of B. If B is S-separable, then G is S-separable. O

Lemma 3.4. Let M be a finitely generated subgroup of A,. Then G(T) is
M -separable.

Proof. Let V(T) ={1,2,...,n}. We shall use induction on n. The case n = 2
follows from Lemma 3.1 and Lemma 3.3. Suppose n > 3. Note that the tree
T has a vertex of degree one, say n, which is joined to a unique vertex, say
n — 1. Let T; be the tree obtained by removing the vertex n and the edge
n(n—1) from T. Then G(T') = G(T1) ;; Ap, where H = H(,,_1y,, = Hp(n—1). By
induction, G(T4) is H-separable. By Lemma 3.2, for any Ny <y H, there exists
N1 <y G(T1) such that NyNH = fy(Ng). Since A,, is subgroup separable, it is
H-separable. By Lemma 3.1, there exists No<y A, such that NoNH = fu(Ng).

Suppose r = n. Since A, is M-separable, by Lemma 3.3, G(T) is M-
separable.

Suppose r # n. Then by induction, G(Ty) is M-separable and thus by
Lemma 3.3 again, G(T') is M-separable. O

We are now ready to prove Theorem 2.8.

Proof of Theorem 2.8. We use induction on n. The case n = 2 follows from
Lemma 3.1 and Theorem 2.7. Suppose n > 3. As in Lemma 3.4, we may
assume that n is a vertex of degree one and is joined to a unique vertex, say
n—1. Then G(T) = G(T1) ;, A, where Tj is the tree obtained by removing the
vertex n and the edge n(n—1) from T and H = Hp—1yn = Hp(n—1)- By Lemma
3.4, G(T1) is H-separable, and by Lemma 3.2, for any Ny <y H, there exists
N1 <y G(Th) such that Ny N H = fyg(Npy). Furthermore, A,, is H-separable,
and by Lemma 3.1, there exists N2 <y A,, such that No N H = fy(Ng). Since
G(T1) is m. by the induction hypothesis and A,, is 7., it follows from Theorem
2.7 that G(T) is 7. O

4. Proof of Lemma 2.9
We shall need the following two lemmas from [25, Lemmas 4.1 and 4.2]

Lemma 4.1. Let G = A}, B and M, K be subgroups of A, B respectively with
MNH =1= KnNH. Suppose for each Ng<yH there exist Na<y A, Np<y B such
that NaNH=NpNHCNyg and N\HNNasM = Ny, NgHNNpK = Np.
If Ais H M,HM,MH -separable and B is H, K, HK, K H-separable, then G
1s M K -separable.
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Lemma 4.2. Let G = A}, B and M, K be subgroups of A, B respectively with
MNH=1=KnH. Suppose A, B, M, K satisfy the hypothesis of Lemma
4.1. Then G is M x K -separable.

Lemma 4.3. Let G = A; B and M, K be subgroups of B. Suppose for each
Ny <f H there exist Na<f A, Np <y B such that NA\NH = NpNH C Ny. If
A is H-separable and B is H, M K -separable, then G is M K -separable.

Proof. Let ge G — MK.

Case 1. g € B. Since B is M K-separable, there exists P <y B such that
g ¢ PMK. Let Ny = PN H. By assumption, there exist N4 <y A, Np <y B
such that NyNH = NgNH C Ny. Let R4 = Ny,Rg = NN P. Then
RaNH =RpNH. Let G = A/Ra;B/Rp where H = HRs/Ra = HRp/Rp.
Clearly, G is a homomorphic image of G, and § ¢ MK. Since G is residually
finite by [4, Theorem 2] and MK is finite, there exists N <y G such that
G¢ NMK. Let N be the preimage of N. Then g ¢ NMK.

Case 2. g€ A—H or g ¢ AU B. We will only consider the case g =
ai1biasbs - - - apb, where a; € A— H,b; € B— H,i=1,2,...,n. The other
cases are similar. Since A is H-separable, B is H-separable, there exist Ma<fA,
Mp<yBsuchthata; ¢ MaH,b; ¢ MpH,i=1,2,...,n. Let Ny = MsNMpg.
By assumption, there exist N4 <¢ A, Np <y B such that Na«NH =NpNH C
Ng. Let R4 = NaNMy,Rg = NgNMpg. Then Ry NH = RgN H. Let
G = A/JRa4B/Rp where H = HRao/Ra = HRp/Rp. Clearly, ||g]| = ||g]|-
So g ¢ MK. Furthermore, MK is finite. We can now proceed as in Case 1 to
complete the proof. (I

Lemma 4.4. Let M and K be finitely generated normal subgroups of A, and
Ay respectively where M O[], Hyj = 1 = KN ][], Hr; (here we allow
r=1k). Then G(T) is MK -separable.

Proof. Let V(T) = {1,2,...,n}. We shall use induction on n. The case n = 2
follows from Lemma 3.1, Lemma 4.1 and Lemma 4.3. Suppose n > 3. As
in Lemma 3.4, we may assume that n is a vertex of degree one and is joined
to a unique vertex, say n — 1. Then G(T) = G(Ti); A, where Ty is the
tree obtained by removing the vertex n and the edge n(n — 1) from T and
H= H(n—l)n = Hp(n—-1)-

Case 1. M < G(T1) and K < A,. By the induction, G(T3) is M H, HM-
separable. By Lemma 3.4, G(T1) is M, H-separable. By Lemma 3.2, for any
Su <y H, Sy <y M and Sk <y K, there exists Ny <y G(17) such that NyNM =
fam(Sar), NiNH = fi(Sy) and NyMNN H = N;. By Lemma 3.1, there exists
N2<lfAn such that NQﬂK = fK(SK), NQﬂH = fH(SH) and NQKQNQH = NQ.

Since A,, is subgroup separable, it is H, K, HK, K H-separable. Hence by
Lemma 4.1, G(T) is M K-separable.

Case 2. K < G(Ty) and M < A,,. The argument is similar to Case 1.

Case 3. K, M < G(T1). By induction, G(T1) is M K-separable. By Lemma
3.4, G(T1) is H-separable, and by Lemma 3.2, for any Sy <y H there exists

J~k
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N1 <5 G(Th) such that Ny N H = fy(Swg). Furthermore, A, is H-separable,
and by Lemma 3.1, for any Sy <y H there exists Ny <f A,, such that NoNH =
fu(SH). Hence by Lemma 4.3, G(T') is M K-separable.

Case 4. K, M < A,. The argument is similar to Case 3. O

We are now ready to prove Lemma 2.9.

Proof of Lemma 2.9. Let V(T) = {1,2,...,n}. We shall use induction on n.
The case n = 2 follows from Lemma 3.1 and Lemma 4.2. Suppose n > 3.
As in Lemma 3.4, we may assume that n is a vertex of degree one and is
joined to a unique vertex, say n — 1. Then G(T) = G(T1) ;, A, where T is
the tree obtained by removing the vertex n and the edge n(n — 1) from 7" and
H= H(n—l)n = Hp(n—-1)-

Case 1. M < G(Ty) and K < A,,. By Lemma 4.4, G(T1) is M H-separable
and H M-separable. By Lemma 3.4, G(T1) is M, H-separable. By Lemma 3.1
and Lemma 3.2, G(T1) and A,, satisfy the hypothesis of Lemma 4.2. Hence
G(T) is M = K-separable.

Case 2. K < G(T1) and M < A,. The argument is similar to Case 1.

Case 3. K, M < G(T1). By induction, G(T1) is M x K-separable. By
Lemma 3.4, G(T1) is H-separable. It then follows from Lemma 3.1, Lemma
3.2 and Lemma 3.3 that G(T") is M * K-separable. O

5. Proof of Lemma 2.10

Lemma 5.1. Let G = A;; B and M, K be subgroups of A, B respectively with
MNH =1=KnNH. Let S<5 (M *K) and suppose there exist Na<y A, Ng<y B
such that NA\NH=H =NpNH and NaNM=SNM, NgNK=5SNK.
Then there exists N <y G such that NN (M« K) = S.

Proof. Let G = A/Na x B/Np. Since Ny N H = H = N N H, the natural
epimorphisms from A onto A/N4 and from B onto B/Np can be extended to
an epimorphism 1 from G onto G.

First we show that Ker v N (M « K) C S. Let g be any element with the
smallest length such that g € Ker ¢y N (M * K) but g ¢ S. Without loss of
generality we may assume g = miky - --myk, where m; € M,k; € K. Then
G =miky---mpk, = 1. Hence m; = 1 or k; = 1 for some i. Suppose m; = 1
(the case k; = 1 is similar). Then m; € Ny for M = MN4/Na. Hence
mi € NaNM=SNM CS. Now

g = (mlkl e 'mi—lki—l)mi(mlkl e 'mi—lki—1)_1(m1k1 e 'mi—lki—l)k’i oMk,

But (mlkzl . -mi_lkzi_l)mi(mlkl . -mi_lkzi_l)_l € S since m; € S<]f (M*K)
This implies that g1 = (mik1---mi—1ki—1)k; - - mnkn ¢ S. Furthermore g7 =
1 for m; = 1. Therefore g; € Ker N (M x K), but ||g1]| < |lg||, a contradiction.
Thus Ker ¢y N (M x K) C S.

Next we show that SN M = 1and SNK = 1. Let 5 € SN M. Then

7 =5 =7m where s € S and m € M. So sm~—! = 1, and this implies that
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sm~' € Ker N (M * K) C S. Therefore m € SN M C N4. This implies that
m =1, and thus y = 1. Hence SN M = 1. Similarly, SN K =1.

Now G = A/Na * B/Ng = A/Nao+ (M « K)£B/Ng. Since SN M = 1,
M = MS/S ~ M/(SN M) ~ M. Similarly, SN K = 1 implies that K =
KS/S~EK/(SNEK)~EK. So, we can form G = A/N,=((M «K)/S)=B/Ng.
Clearly, Gisa homomorphic image of G, and thus Gisa homomorphic image
of G.

Since (M * K)/S is finite and G is residually finite by [4, Theorem 2], there

exists N <y G such that N N ((M % K)/S) = 1. Let N be the preimage of N
in G. We shall show that NN (M %« K) = S. Clearly S C NN (M % K). Now
let go € NN (M % K). Since gz = 1, we have gz € S. Let ga = f where t € S.
Then gzt—! = 1, and this implies that got~' € Ker ¢ N (M % K) C S. Hence
gge€Sand NN(M«K)=S5. O

We are now ready to prove Lemma 2.10.

Proof of Lemma 2.10. Let S <y (M * K) be given. Let Sy = farer (S) N M
and Sk = farsx (S) N K. Then Sy and Sk are characteristic subgroups of M
and K, respectively.

Since T is a tree, there exists a unique path from the vertex r to the vertex
k. Let i9jo be an edge on this path. Let 77 and 7> be the two disjoint trees
obtained by removing the edge igjo from T'. Then G(T') = G(T1) ;; G(T) where
H =H,,;, = Hj,i, and A, C G(T1) and Ay C G(T5). For all j with j ~ 7, let
ST]' = Hrj; and for all ] with ] ~ k, let Skj = ij.

By Lemma 3.1, there exists N, <y A, such that N, N H,; = fu,,(Sy;) = Hy;
and N, "M = fp(Sy) = Sy Let ¢p1 be the epimorphism from G(T3) onto
A, /N, where ¢1(a) = 1, Va € A; C G(Th), i # r and ¢¥1(a) = aN,, Va €
AT. Let Nl = Ker 1/)1. Then N1 < G(Tl), Nl NM = fM(SM) = SM and
N1 N H = H. Similarly there is a No <5 G(T2) with No N K = fx(Sk) = Sk
and No N H = H. Therefore by Lemma 5.1, there exists N <y G(T) such that
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