• Title/Summary/Keyword: cyclic module

Search Result 54, Processing Time 0.023 seconds

ON SOME PROPERTIES OF MALCEV-NEUMANN MODULES

  • Zhao, Renyu;Liu, Zhongkui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.445-456
    • /
    • 2008
  • Let M be a right R-module, G an ordered group and ${\sigma}$ a map from G into the group of automorphisms of R. The conditions under which the Malcev-Neumann module M* ((G)) is a PS module and a p.q.Baer module are investigated in this paper. It is shown that: (1) If $M_R$ is a reduced ${\sigma}$-compatible module, then the Malcev-Neumann module M* ((G)) over a PS-module is also a PS-module; (2) If $M_R$ is a faithful ${\sigma}$-compatible module, then the Malcev-Neumann module M* ((G)) is a p.q.Baer module if and only if the right annihilator of any G-indexed family of cyclic submodules of M in R is generated by an idempotent of R.

INJECTIVE PROPERTY RELATIVE TO NONSINGULAR EXACT SEQUENCES

  • Arabi-Kakavand, Marzieh;Asgari, Shadi;Tolooei, Yaser
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.559-571
    • /
    • 2017
  • We investigate modules M having the injective property relative to nonsingular modules. Such modules are called "$\mathcal{N}$-injective modules". It is shown that M is an $\mathcal{N}$-injective R-module if and only if the annihilator of $Z_2(R_R)$ in M is equal to the annihilator of $Z_2(R_R)$ in E(M). Every $\mathcal{N}$-injective R-module is injective precisely when R is a right nonsingular ring. We prove that the endomorphism ring of an $\mathcal{N}$-injective module has a von Neumann regular factor ring. Every (finitely generated, cyclic, free) R-module is $\mathcal{N}$-injective, if and only if $R^{(\mathbb{N})}$ is $\mathcal{N}$-injective, if and only if R is right t-semisimple. The $\mathcal{N}$-injective property is characterized for right extending rings, semilocal rings and rings of finite reduced rank. Using the $\mathcal{N}$-injective property, we determine the rings whose all nonsingular cyclic modules are injective.

Eigenvalue Analysis of a Blower Impeller Using Cyclic Symmetry (송풍기 임펠러의 순환대칭성을 이용한 고유치해석)

  • 김창부;안영철
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.523-530
    • /
    • 2000
  • In this paper we present an efficient method for finite element vibration analysis of a structure with cyclic symmetry and applied it to calculating the natural vibration characteristics for a blower impeller. Blower impeller having a cyclically symmetric structure is composed of circumferentially repeated substructures., The whole-structure is partitioned into substructures and then finite element vibration analysis is performed for a substructure using transformed equations for each number of nodal diameter which are derived from discrete Fourier transform in consideration of the cyclic symmetry. natural vibration characteristics for three kinds of models which are blower impeller without support ring with small support ring and with large support ring are numerically analyzed and compared. Accuracy and efficiency of the present method are verified by comparison of results of the analysis with substructure and with whole-structure. Also the results of the analysis by cyclic symmetry module(SOL 115) of MSC/NASTRAN are presented and compared.

  • PDF

SKEW CYCLIC CODES OVER 𝔽p + v𝔽p + v2𝔽p

  • Mousavi, Hamed;Moussavi, Ahmad;Rahimi, Saeed
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1627-1638
    • /
    • 2018
  • In this paper, we study an special type of cyclic codes called skew cyclic codes over the ring ${\mathbb{F}}_p+v{\mathbb{F}}_p+v^2{\mathbb{F}}_p$, where p is a prime number. This set of codes are the result of module (or ring) structure of the skew polynomial ring (${\mathbb{F}}_p+v{\mathbb{F}}_p+v^2{\mathbb{F}}_p$)[$x;{\theta}$] where $v^3=1$ and ${\theta}$ is an ${\mathbb{F}}_p$-automorphism such that ${\theta}(v)=v^2$. We show that when n is even, these codes are either principal or generated by two elements. The generator and parity check matrix are proposed. Some examples of linear codes with optimum Hamming distance are also provided.

A REMARK ON MULTIPLICATION MODULES

  • Choi, Chang-Woo;Kim, Eun-Sup
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.163-165
    • /
    • 1994
  • Modules which satisfy the converse of Schur's lemma have been studied by many authors. In [6], R. Ware proved that a projective module P over a semiprime ring R is irreducible if and only if En $d_{R}$(P) is a division ring. Also, Y. Hirano and J.K. Park proved that a torsionless module M over a semiprime ring R is irreducible if and only if En $d_{R}$(M) is a division ring. In case R is a commutative ring, we obtain the following: An R-module M is irreducible if and only if En $d_{R}$(M) is a division ring and M is a multiplication R-module. Throughout this paper, R is commutative ring with identity and all modules are unital left R-modules. Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for each submodule N of M, there exists and ideal I of R such that N=IM. Cyclic R-modules are multiplication modules. In particular, irreducible R-modules are multiplication modules.dules.

  • PDF

A GENERALIZATION OF MULTIPLICATION MODULES

  • Perez, Jaime Castro;Montes, Jose Rios;Sanchez, Gustavo Tapia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.83-102
    • /
    • 2019
  • For $M{\in}R-Mod$, $N{\subseteq}M$ and $L{\in}{\sigma}[M]$ we consider the product $N_ML={\sum}_{f{\in}Hom_R(M,L)}\;f(N)$. A module $N{\in}{\sigma}[M]$ is called an M-multiplication module if for every submodule L of N, there exists a submodule I of M such that $L=I_MN$. We extend some important results given for multiplication modules to M-multiplication modules. As applications we obtain some new results when M is a semiprime Goldie module. In particular we prove that M is a semiprime Goldie module with an essential socle and $N{\in}{\sigma}[M]$ is an M-multiplication module, then N is cyclic, distributive and semisimple module. To prove these results we have had to develop new methods.

ON A GENERALIZATION OF ⊕-SUPPLEMENTED MODULES

  • Turkmen, Burcu Nisanci;Davvaz, Bijan
    • Honam Mathematical Journal
    • /
    • v.41 no.3
    • /
    • pp.531-538
    • /
    • 2019
  • We introduce FI-${\oplus}$-supplemented modules as a proper generalization of ${\oplus}$-supplemented modules. We prove that; (1) every finite direct sum of FI-${\oplus}$-supplemented R-modules is an FI-${\oplus}$-supplemented R-module for any ring R ; (2) if every left R-module is FI-${\oplus}$-supplemented over a semilocal ring R, then R is left perfect; (3) if M is a finitely generated torsion-free uniform R-module over a commutative integrally closed domain such that every direct summand of M is FI-${\oplus}$-supplemented, then M is a direct sum of cyclic modules.

REVISIT TO ALEXANDER MODULES OF 2-GENERATOR KNOTS IN THE 3-SPHERE

  • Song, Hyun-Jong
    • East Asian mathematical journal
    • /
    • v.36 no.3
    • /
    • pp.359-364
    • /
    • 2020
  • It is known that a 2-generator knot K has a cyclic Alexander module ℤ[t, t―1]/(Δ(t)) where Δ(t) is the Alexander polynomial of K. In this paper we explicitly show how to reduce 2-generator Alexander modules to cyclic ones by using Chiswell, Glass and Wilsons presentations of 2-generator knot groups $$<\;x,\;y\;{\mid}\;(x^{{\alpha}_1})^{y^{{\gamma}_1}},\;{\cdots}\;,\;(x^{{\alpha}_k})^{y^{{\gamma}_k}}\;>$$ where ab = bab-1.

A Study on Constructing Highly Adder/multiplier Systems over Galois Felds

  • Park, Chun-Myoung
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.318-321
    • /
    • 2000
  • This paper propose the method of constructing the highly efficiency adder and multiplier systems over finite fie2, degree of uk terms, therefore we decrease k into m-1 degree using irreducible primitive polynomial. We propose two method of control signal generation for perform above decrease process. One method is the combinational logic expression and the other method is universal signal generation. The proposed method of constructing the highly adder/multiplier systems is as following. First of all, we obtain algorithms for addition and multiplication arithmetic operation based on the mathematical properties over finite fields, next we construct basic cell of A-cell and M-cell using T-gate and modP cyclic gate. Finally we construct adder module and multiplier module over finite fields after synthesize ${\alpha}$$\^$k/ generation module and control signal CSt generation module with A-cell and M-cell. Then, we propose the future research and prospects.

  • PDF

WHEN IS AN ENDOMORPHISM RING P-COHERENT?

  • Mao, Lixin
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.99-111
    • /
    • 2009
  • A ring is called left P-coherent if every principal left ideal is finitely presented. Let M be a right R-module with the endomorphism ring S. We mainly study the P-coherence of S. It is shown that S is a left P-coherent ring if and only if the left annihilator $ann_S$(X) is a finitely generated left ideal of S for any M-cyclic submodule X of M if and only if every cyclically M-presented right R-module has an M-torsionfree preenvelope. As applications, we investigate when the endomorphism ring S is left PP or von Neumann regular.