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Abstract : This paper propose the method of
constructing the highly efficiency adder and multiplier
systems over finite fie2 degree of

ok terms, therefore we

decrease k into m-1 degree using irreducible primitive
polynomial. We propose two method of control signal
generation for perform above decrease process. One
method is the combinational logic expression and the
other method is universal signal generation.

The proposed method of constructing the highly
adder/multiplier systems is as following. First of all, we
obtain algorithms for addition and multiplication
arithmetic operation based on the mathematical
properties over finite fields, next we construct basic cell
of A-cell and M-cell using T-gate and modP cyclic gate.
Finally we construct adder module and multiplier
module over finite fields after synthesize o generation
module and control signal CSt generation module with
A-cell and M-cell.

Then, we propose the future research and prospects.

1. Introduction

In many area of digital logic systems and computer
ap?lication, the arithmetic operation is important role.
0.2 Specially, in modern time, the multimedia and its
application fields necessary to complex arithmetic
operation and massive data manipulation.

Therefore highly efficiency arithmetic operation and
its'systems are researched in previous time. In specially,
the arithmetic operation is effective analyzed in finite
fields or galois fields. The galois filds is used to the
mathematical background for encryption/decryption;
error correcting code, digital image processing, digital
signal processing, switching function of digital logic
systems etc.

The following is the previous researches of arithmetic
operation and its hardware implementation.

C.C.Wang™ constructed multiplier over GF(2™) based
on the self-dual normal basis, and C.Ling Wang etc.¥
constructed parallel-in-parallel-out systolic array type
multiplier based on normal basis. Also, S.T.J.Fenn etc.”
Constructed the multiplier based on the dual basis and
K.ZPekmastzi®®  propose  multiplxer-based array
multiplier. And G.Drolet!”) propose the small complexity
arithmetic circuits.

This paper’s construction is as following. Section2
discuss the important mathematical properties of galois

fields and section3 discuss construct the adder module
over galois fields that imply addition algorithm, basic A-
cell. Section4 discuss the multiplier module over galois
fields that imply multiplication algorithm, basic M-cell,
of generation module, control signal CSt generation
module, universal control signal CSt generation module.
In section5, we summary the proposed highly
adder/multiplier over galois fields, and we compare
proposed method with earlier method.

Also we prospect future demand research and prospect

2. Mathematical Properties of Galois Fields

In this section, we review the important mathematical
properties over galois fields, these mathematical
properties used in build up this paper.

Any other mathematical properties except these
mathematical properties refer to references.®”

2.1 Finite Fields .

Finite fields is defined by any prime number P and
integer m, namely galois fields GF(P™). In generally
finite fields is organized by 5-tuple {S,+,¢,0,1}, where S
is set of elements, + and e are binary operation over S, 0
and 1 are each identity element for addition and
multiplication arithmetic operation. Also finite fields are
classified into ground fields GF(P) and extension fields
GF(P™). The number of elements over ground fields
GF(P), P is the prime number more than 1, are
{0,1,2,...... -1}

2.2 Important mathematical properties
The important mathematical properties over galois
fields are as following. ‘

<P1> Commutative law
(1) a+b=b+a (2)a- b=b- a(Va,bEGFP™)
<P2> Associative law
(1) a+(b+c)=(a+b)+c (2) a- (b- c)=(a- b)- ¢
(V a,b,c EGF(P™))
<P3> Distributive law
a- (b+c)=a- b+a ¢
<P4> Zero element 0 exist.
at+0=0+a=a (VaEGFP™)
<P5> Unit element 1 exist.
a- 1=1- a=a (VaEGFP™)
<P6> Inverse element exist.
(1) additive inverse element.
a+(-a)=0
(2) multiplicative inverse element .
a (at)=1 (V-a,a'EGFP™)
<P7>0- a=a- 0=0(V a&EGFP™)).

(Va,b,cEGF(P™)
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3. Adder
3.1 Addition Algorithm
ml
We put any two element over GF(P™), F(oz):E:aioci
&0

l ml

and G(a):ijoc’, and A(a):ZAkak that is the element
= K0

after add them. Then we represent relationship among

these elements as following.

F()+G(0) = a0+ bo!= Y (a+by) o

md
=2Akak = A(0) (3-1)
=0

where, a;, b; AEGFP)={0,1,...,P-1}(1,},k=0,1,...,m-1),
A= 3;+ b;, X and + means modP summation.

Also, we represent above expression(3-1) to vector
space, it is expression(3-2).
F((X)=F§a!=[am_1, ' P TN , a1, a]= F()[av]

G(a)=gm=[bm-\’ bm-2! ------ ’ b‘! b0]= M[bvl
A(a)=A o =[Am-1’ Am-27 ------ H Al’ AO]= A@[AV]

F(o) + G(oy=E(){ay] + G{a)[bv]= A([Av] (3-2)
Where, ay by AyEGF(P)(V=0,1,..., m-1)

3.2 Basic A-cell

In order to construct adder, first we construct basic
adder cell(A-cell) using data selector T-gate and modP
cyclic gate. The following expression(3-3) represent T-
gate operation and Fig.3-1 depict T-gate, expression(3-4)
represent modP cyclic gate operation and Fig.3-2 depict
modP cyclic gate.

Z=1 iff L=CS (3-3)
Ihb, — 0
f, —— 1
Input
I L, — 2 TGP Output
| ¢

I, — P-2
Ip, P-1

Control

Signal — 1

CSj

Fig.3-1. The block diagram of T-gate.

Z=1"°=(1+C) modP (3-4)
Input_| Cl— Output
I Z

Where, 1<C<P-1(C=integer)
Fig.3-2. The block diagram of modP cyclic gate.

As we see above contents, because of Ay=a;+b(I=j=k),
Ay is obtained as following. The coefficient a; use as T-
gate input after passing modP cyclic gate, also bjuse as
T-gate control signal. Therefore we construct A-ceil
Fig.3-3 and its characteristic operation is expression (3-
S).

Ay=2,""=( ai+b;) modP (3-5)
T
a; el P A
N

Fig.3-3. The block diagram of A-cell.

3.3 Adder module

We construct the adder module(A-module) using
above section 3.1 and 3.2 . The Fig.3-4 shows block
diagram of A-module. :

Fla¥a) ™ A-module F"— A@)A)
Gla)(b,) ~2—1

Fig. 3-4. The block diagram of adder module

4. Multiplier Module

There are 2m — 2 term of o for any two element
multiplication over Galois Fields, that time we convert
o term of of, m<k<2m-2, into less standard basis
representation o term less than m-1 degree using
irreducible primitive polynomial. Next we obtain the
result that multiply two element after sum each o term.

We named Mod F(X) for this processing.

[Definition 4-1] Let 8{(ag, a;, ... »am2, am1)>(bg, by,
b2, bm.)}=Mi, mapping function & is binary
operation, 8:GF(P™XGF(P™)—GF(P). Where M is the
kth product result of (ag, aj, ... ,am-2, ay) and (by, by,
. ,bm2, bmi), and a, bEGF(P)(,j=0,1,....m-1) and
0<k<2m-2.

Also mapping relationship is decided by selection
irreducible primitive polynomial.

4.1 Multiplication algorithm
™

We put any two element over GF(P™), F(oz):Zaiozi
vt

wl ntl
and G(o)= Y bod, and M(a)= Y, Mo that is the
0 k0

element after multiply them. Then we represent
relationship among these elements as following.

F(o) oG(ar) =Zaioc‘ -ija’ =am_1(2bj(x o™ 4
&0 0 Y

am_z(ija’) o™+ a,(ijaJ) ol s a()(zbja") o
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22
=Y abo @-1)

.0

where, a;,b;EGF(P)(1,j.k=0,1,...,m-1), + and 2 are
modP summation, e is mod P product.

As we see the expression(4-1), we partition o term
into m<k1<2m-2 and 0<k2<m-1. This is represent in
expression(4-2).

m2 m -
F(a) «G(0)= 2 a; b ae Z a; b o= Z M, o

frum 20 0

=M(ov) 4-2)

where, ki1=a; bj(ki=i+j=m,m+1, ... ,2m-2)
k2= a; bj(k2=i+j=0,1, ... ,m-1)

The other hand, these o terms are used in input of
control signal CSt.

4.2 ModP multiplication gate and M-cell

This section discuss the modP multiplication
processing device that is constructed by using T-gate,
namely modP multiplication gate, it is'depicted in Fig.4-
1. And we construct basic M-cell using by modP
multiplication gate and adder basic cell A-cell, it is
depicted in Fig.4-2.

.

A B M

b——ro

Where, a; ,b;, M,&EGF(P)
Fig. 4-1. The block diagram of modP multiplication

Gate,
Previous
stage Rr a,
b’ Mivj bj
3 Next stage
Rr
(a) symbol
Previous
stage
R, j ]
[
b, b,
T Next stage
l{r

(b) internal circuit
where, a;,b;,R;E GF(P)
Fig.4-2. Basic M-cell.

4.3 o generation module
The of generation module can be constructed by using
M-cell, it is represented in Fig.4-3.

a,, TR g,
B "[I o part
[
b, My Y — My
] 1 1 -1 1 — R,
b4 M, VAT — - M,
. Rl
by = M., L e
i
ot part
P R = Ry e D wl

Fig. 4-3. o generation module

4.4 Control signal CSt generation module

The o term is generated in m<k1<2m-2 and 0<k2<m-
I, we can obtain multiplication result between two
element using modP sum o with result after decrease
m-1 degree using irreducible primitive polynomial.
Therefore o*! term is defined according to o2, we named
o2 to control signal CSt(1=0,1,2,...,m-1).

This paper propose two algorithm of generating
control signal CSt.

4.4.1 Combinational method

[STEP1] we select the proper irreducible primitive
polynomial.

[STEP2] we construct basic control digit code
BCD,(QQQ...Q) of o*. Where w=m,m+1,...,2m-2 and

- QEGF(®).

[STEP3] final control signal CSt is obtained as following
we disregard Q except corresponding Ry, and modP sum
after each modP multiply.

The drawback of this algorithm in according to
selected irreducible primitive polynomial. Therefore, in
using this algorithm, we select irreducible primitive
polynomial type X™+(P-DX™'4+@P-DX™%+ ... + (P-
DX+(P-1).

4.4.2 Universal control signal CSt generation module

This proposed algorithm’s advantage is usage of any
irreducible primitive polynomial. That is not change
basic control signal generation module, only input each o
term coefficient in change the selected irreducible
primitive polynomial. We named this algorithm as
universal control signal CSt generation module.

This universal control signal CSt generation module
operate modF(X). In order to obtain this function, we
input coefficient of irreducible primitive polynomial to
shift register, and shift each coefficient to next stage shift
register in case of multiply o term in each time.

The Fig.4-4 depicted universal control signal CSt
generation module.
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Fig.4-4. Universal control signal CSt generation
module.

4.5 Multiplier

This section discuss constructing the multiplication
module over galois fields. We can construct this
multiplication module in merging o generation module
with control signal generation module CSt. Where, final
multiplication result M;(k=0,1,......m-1) between any
two element over galois fields obtain R;; of o mod P
cyclic corresponding to control sgnal CSt. This is
represented in exprssion (4-3).

Mk= Rﬂ—)CSt (4_3)
Then, the expression(4-3) is the same as expression in

adder-module. Therefore we use the adder module in this
part, this block diagram depicted in Fig.4-5.

———<——G(a)(b,)

E—«—' E(a)a,)
ml — 1

of generation

%nodule Adder

— module

| L | | |
m (1” 2
part cst|m m

Control

51gn'§1_l
eneration

m-1 R, gmodule

M(a)(M,) =

Fig.4-5. The multiplier over galois fields.

5. Conclusion

This paper propose the method of constructing the
highly efficiency adder and multiplier systems over finite
fields. The proposed highly adder/multiplier systems is
more regularity, extensibility and modularity than any
other research.

Also, the proposed highly efficiency adder and
multiplier systems is fabricated in VLSI type easily.

The future demand research is the other arithmetic
operation subtracter and divider, also need to
constructing AOU(Arithmetic Operation Unit) in order

to processing the four basic arithmetic operation. And
we demanded more improvement ALOU(Arithmetic &
Logical Operation Unit). The proposed highly efficiency
adder and multiplier systems is able to apply modern
multimedia hardware systems. The following table5-1
represented several item that compare proposed highly
adder/multiplier over finite fields with any other research
result.

Table 5-1. The comparison table

S.TJ.

Comparison C.C. | C-Ling Fenn This
item Wang _etc. etc. paper
Basis SDNB SB DB NB
I/O Type SISO | SIPO P-1/0 P-1/0
AND 3m 2m’ 2m’” 2m
OR 2m 2m’ 2m’ m

| # of
control signal | 2m-1 2m-1 2m-2 m-1
Overall Type | M-O S-A S-A S-A
Regularity/
Extensibility (] © 0 0

Remarks : SISO : Serial Input Serial Output
SIPO : Serial Input Parallel Output,
P-1/O : Parallel /O
I/O : Input/Output
SDNB : Standard Dual Normal Basis
SB : Standard Basis
NB : Normal Basis
DB : Dual Basis
M-O : Massey-Omura
S-A : Systolic Array
0 : Available ©:some available
¢ : Disable
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